Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Lab-Based Realization of a Blink Universe via Magnon and Quantum Vacuum Analog System

17 September 2025   17:18 Diperbarui: 17 September 2025   17:18 96
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

5. Connection to Cosmological Analogues

The pattern formations described above share strong conceptual parallels with cosmological structure formation:

Thus, the nonlinear emergence of patterns in this system is not only a mathematical curiosity but a prototypical example of how geometry, matter, and topological defects may co-emerge from quantum vacuum--like fields.

Pattern formation in the blink-excited nonlinear field system demonstrates that coherent, structured order can arise spontaneously from minimal initial conditions and governed by universal nonlinear laws. These localized structures, when interpreted geometrically, offer a laboratory analog to the origin of spacetime curvature, matter clumping, and the seeds of cosmic topology.

D. Spectral Renormalization and Stability Landscapes

To rigorously analyze the nonlinear structures and emergent geometries arising from blink excitation, we employ spectral renormalization techniques to both stabilize the field evolution and map the system's underlying stability landscape. This step is crucial for understanding the dynamical transitions between disordered, metastable, and highly ordered regimes.

1. Spectral Renormalization Method (SRM)

Originally developed for solving nonlinear Schrdinger-type equations, Spectral Renormalization Methods (SRM) allow for stable numerical convergence of localized solutions (e.g., solitons) in nonlinear systems.

In our case, the governing equation:

I+Ic22I+I2I=B(x,t)\ddot{I} + \gamma \dot{I} - c^2 \nabla^2 I + \lambda |I|^2 I = B(x,t)I+Ic22I+I2I=B(x,t)

is first reformulated into a frequency-domain representation using discrete Fourier transforms (DFT). The SRM steps are:

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun