Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Lab-Based Realization of a Blink Universe via Magnon and Quantum Vacuum Analog System

17 September 2025   17:18 Diperbarui: 17 September 2025   17:18 96
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

Let's define characteristic scales for experimental adaptation:

Energy scale:
Using EI04L0d\mathcal{E} \sim \lambda I_0^4 L_0^dEI04L0d, for system dimensionality ddd, this gives insight into the energy budget required for emergent excitation.
Frequency scale:
Set by 01/T0I0\omega_0 \sim 1/T_0 \sim \sqrt{\lambda} I_001/T0I0, predicting oscillation modes or resonance peaks.
Length scale:
From balance I2Ic22I\lambda |I|^2 I \sim c^2 \nabla^2 II2Ic22I, we obtain:
L0cI0L_0 \sim \frac{c}{\sqrt{\lambda} I_0}L0I0c
which dictates the minimum spatial resolution or curvature envelope in emergent proto-geometry.
Scaling Implications for Physical Systems

Depending on platform:

In magnonic condensates: I0103TI_0 \sim 10^{-3} \, \text{T}I0103T, c103m/sc \sim 10^3 \, \text{m/s}c103m/s, 104s2T2\lambda \sim 10^4 \, \text{s}^{-2} \text{T}^{-2}104s2T2
In optical BECs: c105m/sc \sim 10^5 \, \text{m/s}c105m/s, and L0106mL_0 \sim 10^{-6} \, \text{m}L0106m
The scaling allows estimation of pulse duration, cavity dimensions, and input power, crucial for building table-top analogs.

Summary of Scaling Laws

These insights provide a unified scaling framework to relate lab-based analogs with cosmological or high-energy analogues. In the next section, we extend the model into 2D and explore the geometric implications of curvature emergence.

C. 2D/3D Extensions and Emergent Metric Tensor

Analogy with Scalar Curvature from Energy-Density Localization

Extending the 1D nonlinear information field equation to higher dimensions enables a richer set of phenomena, including the emergence of spatial curvature analogs and topologically distinct structures. We consider the generalized form of the governing equation in ddd-dimensions:

2I(x,t)t2+Itc22I+I2I=B(x,t)\frac{\partial^2 I(\vec{x}, t)}{\partial t^2} + \gamma \frac{\partial I}{\partial t} - c^2 \nabla^2 I + \lambda |I|^2 I = B(\vec{x}, t)t22I(x,t)+tIc22I+I2I=B(x,t)

with xR2\vec{x} \in \mathbb{R}^2xR2 or R3\mathbb{R}^3R3, and 2\nabla^22 representing the Laplacian in 2D or 3D space.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun