Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Multilayer Multiverse with Fractal Internal Structure and Topological Interference: a Unified Cosmological Paradigm

17 September 2025   08:52 Diperbarui: 17 September 2025   08:52 71
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

The Cosmic Microwave Background (CMB) temperature and polarization anisotropies,
Large-scale structure (LSS) anisotropies and clustering anomalies,
Cosmic parity violations and hemispherical asymmetries.
1. Theoretical Setup

Each cosmological "layer" (see Section II.2) is treated as a quasi-FRW submanifold embedded in a higher-dimensional meta-spacetime. The field interf(x)\Phi_{\text{interf}}(x) governing inter-layer connectivity is given by the generalized interference term:

interf(x)ein(x)d4x\Phi_{\text{interf}}(x) \sim \int e^{i\theta_n(x)} \, d^4x

where n(x)\theta_n(x) represents the topological phase angle of layer nn, defined via boundary conditions arising from the Blink Genesis. These phases are non-trivially coupled due to the layered geometry, such that:

net(x)=nwn(x)n(x),with nwn(x)=1\theta_{\text{net}}(x) = \sum_n w_n(x) \theta_n(x), \quad \text{with } \sum_n w_n(x) = 1

The interference field manifests in observable space as modulations in the energy density and curvature tensor RR_{\mu\nu}, altering photon geodesics and matter power spectra.

2. Numerical Modeling Approach

2.1. Simulating Layered Phase Fields

Each layer nn is assigned a stochastic topological phase field n(x)\theta_n(x), modeled as:
 n(x)=nPerlin(x)+nquant(x)\theta_n(x) = \alpha_n \cdot \text{Perlin}(x) + \beta_n \cdot \phi_{\text{quant}}(x) where Perlin(x) introduces smooth spatial coherence and quant(x)\phi_{\text{quant}}(x) injects quantum noise.

The relative coupling wn(x)w_n(x) is varied to simulate constructive and destructive interference zones, particularly near layer junctions and void boundaries.
2.2. Propagating Photons Through Interfering Fields

Ray-tracing simulations are employed to model the path of CMB photons through layered structures modulated by interf(x)\Phi_{\text{interf}}(x),
Photon path deflection (x)\delta\theta(x) is computed via perturbative corrections to the geodesic equation:
d2xd2+dxddxd=finterf(x)\frac{d^2x^\mu}{d\lambda^2} + \Gamma^\mu_{\alpha\beta} \frac{dx^\alpha}{d\lambda} \frac{dx^\beta}{d\lambda} = f^\mu_{\text{interf}}(x)
where finterfinterf(x)f^\mu_{\text{interf}} \propto \nabla^\mu \Phi_{\text{interf}}(x)
2.3. Statistical Outputs

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun