Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Multilayer Multiverse with Fractal Internal Structure and Topological Interference: a Unified Cosmological Paradigm

17 September 2025   08:52 Diperbarui: 17 September 2025   08:52 71
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

To account for gigaparsec-scale underdensities, void-Hubble structures, and asymmetric clustering, we propose a Multilayer FRW extension, where spacetime is composed of discrete, dynamically coupled regions (or layers), each with its own local scale factor ai(t)a_i(t), matter content, and curvature.

The modified metric in this scenario is a piecewise-continuous warped product, written for layer Li\mathcal{L}_i as:

dsi2=i2(t)dt2+ai2(t)[dr21kir2+r2d2]ds_i^2 = -\alpha_i^2(t) dt^2 + a_i^2(t)\left[\frac{dr^2}{1 - k_i r^2} + r^2 d\Omega^2\right]

Where:

i(t)\alpha_i(t) is a lapse function encoding clock-rate variations across layers.
kik_i is the effective curvature of layer Li\mathcal{L}_i.
Cross-layer matching is enforced through boundary field conditions discussed below.
This framework naturally supports locally varying Hubble constants Hi=ai/(iai)H_i = \dot{a}_i / (\alpha_i a_i), which in turn provides a theoretical basis for the observed Hubble tension---i.e., different observational paths (e.g., CMB vs. local ladder) probe different layers or transition zones.

2. Inter-Layer Topological Connectivity

While each layer is locally described by an FRW-like metric, their interconnections are topological rather than metrical---mediated by a shared pre-geometric substrate. This leads us to introduce a field-theoretic formulation of connectivity between layers Li\mathcal{L}_i and Lj\mathcal{L}_j using boundary matching conditions.

Let \phi be a scalar mediator field propagating in the underlying topological bulk. The action of the full system is:

S=iLigi(Ri16G+Limatter)+ijLint[i,j,ij]S = \sum_i \int_{\mathcal{L}_i} \sqrt{-g_i} \left( \frac{R_i}{16\pi G} + \mathcal{L}_i^{\text{matter}} \right) + \int_{\Sigma_{ij}} \mathcal{L}_{\text{int}}[\phi_i, \phi_j, \gamma_{ij}]

Where:

ij\Sigma_{ij} denotes the interface between two adjacent layers.
ij\gamma_{ij} is the induced metric on the interface.
Lint\mathcal{L}_{\text{int}} encodes coupling between fields in Li\mathcal{L}_i and Lj\mathcal{L}_j, such as junction conditions or interference terms.
In analogy with brane-world cosmology and AdS/CFT-type dualities, this structure permits nonlocal correlations and phase interference effects across layers---potentially explaining large-angle CMB anomalies or parity asymmetries.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun