Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Informational Topology of Quantum Resonances: From Dark State Entanglement to Vacuum Tunneling in 2D Superfluid

3 September 2025   16:24 Diperbarui: 3 September 2025   16:24 73
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

(Practical, experiment-ready procedures to test the InterTop predictions: oscillatory visibility, synthetic phase, nonlocal imprint, geometric loop phases, and anisotropic decay.)

The protocols below are written so they can be implemented with (i) entangled photon / SPDC + cavity (or atomic-slit) platforms, and (ii) 2D superfluid platforms (thin He film, polariton condensate, cold-atom 2D gas). Each protocol lists required hardware controls, measurement sequence, statistics & sensitivity targets, control checks, and model-comparison analysis. Follow these exactly to produce data that cleanly discriminate InterTop from standard decoherence.

1. Twin-photon interferometer protocol (nonlocal holonomy test)

Goal: detect (a) oscillatory visibility V()V(\kappa) vs cavity leakage/coupling, (b) deterministic synthetic phase ()\Phi(\kappa), and (c) nonlocal phase imprint eff\beta_{\rm eff} in coincidence fringes when only one photon interacts with the cavity.

Setup

SPDC entangled photon source producing polarization- or time-bin-entangled pairs (A, B) with high brightness.
Photon A: routed through the cavity/atomic-slit apparatus where cavity parameter \kappa (and optionally g,g,\Delta) is controllable. Photon A's path contains a scanning interferometer (or spatial scanning detector) to record fringes when needed.
Photon B: remote reference arm with scanning detector for single and coincidence fringes; does not interact with cavity hardware.
High-efficiency single-photon detectors (SNSPDs preferred), time-tagging electronics, and coincidence processing. Detector efficiency \eta and dark counts bb characterized prior.
Fast control of \kappa (electro-optic or piezo control) and ability to perform slow adiabatic parameter loops in (,g,)(\kappa,g,\Delta) plane.
Measurement sequence (per \kappa point)

a. Parameter grid: choose MM points {i}\{\kappa_i\} spanning bright dark regime; typical M=15M=15--25. Include fine sampling near expected nodes if any pilot data suggest periodicity.
b. Per point acquisition: record coincidence fringe C(x;i)C(x;\kappa_i) by scanning detector coordinate xx (or interferometric phase) across one or more fringe periods. For each xx collect counts for time tintt_{\rm int} to accumulate NN coincidences per point (target N103N\gtrsim 10^3--10410^4 for robust phase/visibility fits). Simultaneously record singles on A and B.
c. Fit model per point: fit C(x;i)=C0[1+Vcoin(i)cos(kx+coin(i))]C(x;\kappa_i)=C_0[1+V_{\rm coin}(\kappa_i)\cos(kx+\Phi_{\rm coin}(\kappa_i))] with Poisson maximum-likelihood; extract V^coin,^coin\hat V_{\rm coin},\hat\Phi_{\rm coin} and uncertainties V,\sigma_{V},\sigma_{\Phi}. Also fit singles SB(x)S_B(x) to check single-arm phase stability B\Phi_B.
d. Phase extraction: build {i,^coin(i)}\{\kappa_i,\hat\Phi_{\rm coin}(\kappa_i)\} and {i,V^coin(i)}\{\kappa_i,\hat V_{\rm coin}(\kappa_i)\} arrays.
Tests & analysis

Test A (synthetic phase): fit ^coin()=0+eff\hat\Phi_{\rm coin}(\kappa)=\Phi_0+\beta_{\rm eff}\kappa. Compute ^eff\hat\beta_{\rm eff} and ^\sigma_{\hat\beta}. Reject null eff=0\beta_{\rm eff}=0 at chosen significance (5 for a strong claim).
Test B (visibility oscillation): fit full InterTop model
VIT()=V0e12(02+(0))cos(+0)V_{\rm IT}(\kappa)=V_0 e^{-\frac12(\sigma_0^2+\gamma(\kappa-\kappa_0))}\,|\cos(\beta\kappa+\phi_0)|
and competing decoherence forms Vdec()=V0exp[()]V_{\rm dec}(\kappa)=V_0'\exp[-\Gamma(\kappa)] (try linear and stretched-exponential \Gamma). Compare by AIC/BIC and residual periodogram (search for spectral power at frequency \beta).
Test C (nonlocality control): check that singles on B show no systematic B()\Phi_B(\kappa) drift while coincidences do. If coincidence phase shifts occur without single-arm shifts --- strong evidence against classical path/optical artifacts.
Test D (loop/adiabatic): perform closed loops in (,g)(\kappa,g), measure loop\Delta\Phi_{\rm loop} via forward/backward subtraction (see Sec. IV.E). Check traversal-speed invariance within adiabatic window.
Statistical thresholds: require ^/^5|\hat\beta|/\sigma_{\hat\beta} \ge 5 and AIC > 10 favoring InterTop, plus reproducibility over 3 experimental runs.
Controls to exclude artifacts

Classical phase insertion: imprint known classical phase on optical path; verify measurement pipeline.
Switch-off entanglement: repeat with classical coherent light to exclude classical cavity-induced phase artifacts.
Detector/FPGA cross-checks: vary detection gating and count rates to exclude pileup/dead-time artifacts.
Thermal/mechanical monitoring: log temperature/vibration to rule out correlated drift.
Sensitivity & resource estimates

Per-point phase uncertainty (NV2)1/2\sigma_\Phi \approx (N V^2)^{-1/2}. For V0.5V\sim0.5, N=104N=10^4 0.014\sigma_\Phi\sim 0.014 rad. For M=15M=15 points over span 1\Delta\kappa\sim 1 unit, ^/(Mrms)\sigma_{\hat\beta}\sim\sigma_\Phi/(\sqrt{M}\,\Delta\kappa_{\rm rms}) 0.004\sim 0.004 rad/unit. Detectable \beta 0.02 rad/unit at 5.
2. Superfluid interferometer protocol (2D film / polariton or cold-atom)

Goal: measure V(vs)V(v_s) and (vs)\Phi(v_s) vs superflow vsv_s, detect oscillatory visibility, resonant dips from vortex inertia, slip-driven time scaling, geometry dependence, and geometric loop phases.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun