Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Informational Topology of Quantum Resonances: From Dark State Entanglement to Vacuum Tunneling in 2D Superfluid

3 September 2025   16:24 Diperbarui: 3 September 2025   16:24 70
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

For reproducibility and community assessment, produce and archive:

Raw counts (singles & coincidences) time tags; scanned coordinate xx and parameter records \lambda (e.g., \kappa or vsv_s).
Fringe fits per point with V^,^\hat V,\hat\Phi and uncertainties.
Vortex-image time series (for superfluid) with event extraction metadata.
Model-fit code and MLE routines, plus bootstrap scripts used to derive confidence intervals and p-values.
A summary table of model comparison metrics (AIC/BIC/likelihoods) and a decision statement per falsifiability criterion.
6. Expected positive outcome signatures (InterTop) --- summary

Reproducible oscillatory visibility V()V(\lambda) with periodicity /\pi/\beta and nodes at predicted parameter positions.
Linear synthetic phase ()0+\Phi(\lambda)\approx\Phi_0+\beta\lambda recovered from phase fits; nonlocal phase imprint (twin-photon) observed while singles remain stationary.
Loop/adiabatic experiments yield geometric phases scaling with enclosed area and independent of traversal speed (within adiabatic limit).
Superfluid: resonant visibility dips correlated with measured vortex inertial resonance; slip-induced time-scaling of visibility consistent with counted \Gamma.
7. Expected negative outcome signatures (falsification of InterTop in tested domain)

Visibility fully and consistently fit by monotonic decoherence models across the entire parameter span, with no significant periodic residuals and best-fit \beta statistically consistent with zero.
No deterministic phase drift in coincidences beyond technical uncertainty; any shifts explained by calibrated classical path changes.
Loop protocols produce no area-dependent phase beyond measurement noise and show traversal-time scaling consistent with dynamical-phase expectations.

Final practical note

Design experiments to overconstrain the InterTop hypothesis: combine phase and visibility fits, time-scaling tests, loop/geometry dependence, nonlocality checks, and independent vortex or cavity diagnostics. The combination of (i) oscillatory structure, (ii) deterministic nonlocal phase, and (iii) geometric-loop invariance constitutes a compelling, hard-to-fake signature of InterTop holonomies. If only a subset of signatures appears, interpret cautiously: quantify the regime (parameter window, SNR) in which the test was performed and report sensitivity limits that allow a reproducible follow-up.

C. Criteria for Falsification

A theory that seeks to supplant or generalize decoherence must establish unambiguous criteria by which it can be experimentally refuted. Within the InterTop framework, falsification requires searching for specific departures from monotonic, isotropic, and path-independent decoherence models. The following criteria provide operational tests:

1. Oscillatory visibility vs. monotonic decay.
Prediction: InterTop visibility curves V(ftrap)V(f_{\rm trap}) or V()V(\kappa) display oscillatory revivals due to holonomy-induced phase factors:
V(ftrap)=V0e(ftrapf0)2cos(ftrap).V(f_{\rm trap}) \;=\; V_0 e^{-\gamma(f_{\rm trap}-f_0)^2} \cos(\beta f_{\rm trap}).

Falsification: If all visibility measurements across the relevant parameter ranges are consistent with pure exponential decay
V(ftrap)=V0eftrap,V(f_{\rm trap}) = V_0 e^{-\Gamma f_{\rm trap}},
without statistically significant oscillations (^/^<5|\hat{\beta}|/\sigma_{\hat{\beta}} < 5), the InterTop model is falsified in that domain.
2. Geometric loop dependence.
Prediction: Phase shifts \Phi accumulated by cycling parameters depend on the loop geometry, not merely endpoints:
loop=CAdp.\Delta \Phi_{\rm loop} \;=\; \oint_{\mathcal{C}} \mathcal{A} \cdot d\mathbf{p}.

Falsification: If phase shifts are path-independent and depend only on initial--final parameter values, InterTop reduces to decoherence and is falsified as a distinct explanatory model.
3. Anisotropic coherence decay.
Prediction: In superfluid tunneling experiments, coherence visibility decays anisotropically:
 V(vx,vy)=exp[xvx2yvy2],xy.V(v_x,v_y) = \exp[-\alpha_x v_x^2 - \alpha_y v_y^2], \quad \alpha_x \neq \alpha_y.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun