Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Informational Topology of Quantum Resonances: From Dark State Entanglement to Vacuum Tunneling in 2D Superfluid

3 September 2025   16:24 Diperbarui: 3 September 2025   16:24 71
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

In InterTop, this winding number is identified as a holonomy invariant:

Each vortex node Nv\mathcal{N}_v contributes a quantized holonomy of +2+2\pi.
Each antivortex node Nv\mathcal{N}_{\bar v} contributes 2-2\pi.
Thus, the appearance of vortex--antivortex pairs can be interpreted as holonomy creation events on the informational manifold.

4. Connection to visibility--distinguishability duality

In photon interferometry, visibility VV and distinguishability DD arise from superposition of path amplitudes. Analogously, in 2D superfluids:

Visibility: interference contrast of vortex density oscillations, reflecting coherent overlap of circulation holonomies.
Distinguishability: imbalance in vortex vs. antivortex populations (or asymmetry in amplitudes AvA_v vs. AvA_{\bar v}).
Thus, the duality relation V2+D21V^2 + D^2 \leq 1 is re-embedded in the vortex manifold: a balanced vortex--antivortex distribution maximizes coherence (high visibility), while asymmetry introduces distinguishability.

5. Experimental consequences

Observation of vortex-pair creation rates and their phase correlations provides a direct probe of holonomy creation.
Oscillatory vortex-density interference fringes are expected when tunneling is driven periodically, a signature not captured by simple mean-field superfluid theory but predicted by InterTop.
The quantized circulation invariants offer natural falsifiable markers for topological holonomies.

B. Variable vortex mass holonomy variance

In the InterTop picture the stability of a holonomy --- i.e. how sharply a synthetic phase is defined --- is controlled by the variance of the holonomy phase Var()\mathrm{Var}(\delta\Phi). The recent experimental observation that a vortex's effective mass is not constant but depends on its motion (and on the background flow / environment) gives a physically measurable mechanism that feeds directly into Var()\mathrm{Var}(\delta\Phi). Below we (i) set up a minimal dynamical model relating vortex motion to phase fluctuations, (ii) derive an explicit relation between vortex mechanical parameters (effective mass, damping, bath spectrum) and holonomy variance, (iii) show how that variance suppresses interference/visibility, and (iv) state concrete, falsifiable experimental consequences and measurement prescriptions.

1. Minimal dynamical model for a vortex and phase sensitivity

Model a single vortex core as a quasi-particle with coordinate X(t)\mathbf{X}(t) (2D), effective mass mvm_v, viscous damping \eta, in-plane restoring forces encoded by an effective stiffness tensor KK (from confinement or image interactions), driven by a stochastic bath force (t)\boldsymbol{\xi}(t). The Langevin equation is

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun