Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Informational Topology of Quantum Resonances: From Dark State Entanglement to Vacuum Tunneling in 2D Superfluid

3 September 2025   16:24 Diperbarui: 3 September 2025   16:24 71
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

A vortex--antivortex tunneling event at spacetime point (r0,t0)(\mathbf{r}_0,t_0) inserts a quantized 22\pi phase winding on any loop encircling r0\mathbf{r}_0. We model the effect on the informational wavefunctional [M]\Psi[\mathcal{M}] by a unitary (or in a stochastic description, jump) operator S^r0\hat{S}_{\mathbf r_0} that shifts the holonomy on loops \gamma enclosing r0\mathbf r_0:

S^r0:+2q(,r0),\hat{S}_{\mathbf r_0}:\quad \Phi_\gamma \mapsto \Phi_\gamma + 2\pi\,q(\gamma,\mathbf r_0),

where q(,r0){0,1}q(\gamma,\mathbf r_0)\in\{0,\pm1\} is one if \gamma winds once about r0\mathbf r_0 (sign depending on vortex vs antivortex). In a path-integral (instanton) formalism, tunneling corresponds to nontrivial saddlepoint configurations inst(r,t)\varphi_{\rm inst}(\mathbf r,t) of the action S[]S[\varphi] with finite action SinstS_{\rm inst}. The semiclassical rate per unit area per unit time is

tunnAeSinst/,\Gamma_{\rm tunn} \;\approx\; \mathcal{A}\,e^{-S_{\rm inst}/\hbar},

with prefactor A\mathcal{A} set by fluctuation determinants. In driven or finite-temperature settings this Arrhenius-like form is modified (e.g. Kramers form, or Schwinger-like exponentials), but the key point is that tunneling is exponentially suppressed unless control parameters (superflow vsv_s, local potential, or drive amplitude) reduce the effective barrier.

2. Holonomy change and geometric transition

A phase-slip is therefore a discrete change in the holonomy field ()\Phi(\gamma). For an observer measuring an interference loop \gamma, a single vortex creation--annihilation sequence that crosses the loop produces a net holonomy increment =2\Delta\Phi=\pm 2\pi. In InterTop language this is a quantized geometric transition---the informational manifold has changed its topological charge content.

For an ensemble of loops or a continuously monitored loop, the time-dependent holonomy is

(t)=(0)+2nqn(ttn),\Phi_\gamma(t) \;=\; \Phi_\gamma(0) + 2\pi\sum_{n} q_n \Theta(t - t_n),

where tnt_n are event times and qnq_n the charges. When events are rare, (t)\Phi_\gamma(t) shows discrete steps (phase slips); when events are frequent, (t)\Phi_\gamma(t) becomes a stochastic process with continuous-like drift and large variance.

3. Effect on probes: discrete jumps, telegraph noise, and visibility collapse

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun