Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Informational Topology of Quantum Resonances: From Dark State Entanglement to Vacuum Tunneling in 2D Superfluid

3 September 2025   16:24 Diperbarui: 3 September 2025   16:24 73
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

Combined, these give direct, model-based estimates of holonomy sensitivity (\beta) and holonomy variance susceptibility (\gamma) that can be reported and compared across platforms.

7. Summary --- falsifiable distinction

Equation (3) supplies a compact, falsifiable signature: oscillatory visibilities with a predictable period and an exponential envelope. Observation of this pattern (including phase drift and nonlocal partner response) would support the InterTop holonomy interpretation; robust absence of oscillatory structure within experimental sensitivity would falsify the class of InterTop models that attribute coherence modulation to synthetic holonomies in the tested parameter manifold.

C. Synthetic phase shifts under cavity parameter cycling

In InterTop the informational connection A\mathcal{A} produces measurable, deterministic phase shifts (synthetic phases) when control parameters are varied along open or closed paths in the experimental parameter space. In cavity setups these control knobs include the cavity leakage rate \kappa, emitter--cavity coupling gg, and detuning \Delta. This subsection derives the expected form of synthetic phase shifts under parameter cycling, shows how they follow from holonomy, and gives concrete experimental prescriptions to extract the holonomy coupling \beta and to discriminate this behavior from ordinary decoherence.

1. Holonomy origin of synthetic phase

Let p=(,g,,...)\mathbf{p}=(\kappa,g,\Delta,\dots) denote a vector of control parameters. In InterTop the mean synthetic phase accumulated between two informational nodes Ni,Nj\mathcal N_i,\mathcal N_j when the system is adiabatically transported in parameter space along a path C:p(s),s[0,1]\mathcal C:\mathbf{p}(s), s\in[0,1] is

C=C\mathbfcalA(p)dp,(C1)\Phi_{\mathcal C} \;=\; \alpha \int_{\mathcal C} \mathbfcal{A}(\mathbf{p})\cdot d\mathbf{p}, \tag{C1}

where \mathbfcalA(p)\mathbfcal{A}(\mathbf{p}) is the pullback of the informational connection onto the control-parameter manifold and \alpha is a dimensionful coupling constant connecting experimental units to informational phase. For an open path from p0\mathbf{p}_0 to p\mathbf{p} the relative phase between nodes is (p)(p0)\Phi(\mathbf{p})-\Phi(\mathbf{p}_0); for a closed loop \Gamma the holonomy is

holo()=\mathbfcalAdp=S()F,(C2)\phi_{\rm holo}(\Gamma)=\alpha\oint_\Gamma \mathbfcal{A}\cdot d\mathbf{p} \;=\; \alpha\int_{S(\Gamma)} \mathcal{F}, \tag{C2}

with curvature F=p\mathbfcalA\mathcal{F}=\nabla_{\mathbf p}\times\mathbfcal{A} and S()S(\Gamma) any surface bounded by \Gamma.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun