Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Informational Topology of Quantum Resonances: From Dark State Entanglement to Vacuum Tunneling in 2D Superfluid

3 September 2025   16:24 Diperbarui: 3 September 2025   16:24 70
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

V(vs;T)=V0(vs)exp(12Varmot(vs)12Varslip(vs;T))cos((vs))(D1)\boxed{\; V(v_s;T) \;=\; V_0(v_s)\; \exp\!\Big(-\tfrac{1}{2}\,\mathrm{Var}_{\rm mot}(v_s) - \tfrac{1}{2}\,\mathrm{Var}_{\rm slip}(v_s;T)\Big)\; \big|\cos\!\big(\overline{\Phi}(v_s)\big)\big| \;} \tag{D1}

where:

V0(vs)V_0(v_s) is a slow (non-oscillatory) amplitude prefactor set by population imbalance and detector contrast (can be taken constant over a narrow vsv_s-window or included as a fitted smooth function),
(vs)\overline{\Phi}(v_s) is the mean synthetic holonomy (carrier phase),
Varmot(vs)\mathrm{Var}_{\rm mot}(v_s) is the variance from continuous vortex motion, and
Varslip(vs;T)\mathrm{Var}_{\rm slip}(v_s;T) is the variance accrued from discrete phase-slip events during measurement time TT.
Equation (D1) is the direct superfluid analog of the InterTop visibility model used for cavity systems (Sec. III.B--C), now written in terms of physically measurable vortex / tunneling quantities.

B. Parametric models for the components

Below we provide minimal, physically motivated parameterizations that experimentalists can fit to data. These forms are flexible --- they can be refined by microscopic modeling or simulation (sGPE) for a given platform.

a. Mean holonomy (carrier phase)
To leading order one expects a linear sensitivity of mean holonomy to superflow:
(vs)=0+vs+2vs2+.(D2)\overline{\Phi}(v_s) \;=\; \Phi_0 + \beta\,v_s + \beta_2 v_s^2 + \cdots. \tag{D2}
The dominant linear coefficient \beta is the primary parameter of interest (units: rad per velocity unit); 2\beta_2 captures curvature for larger drives.
b. Motion-induced variance
From Sec. IV.B (Eqs. (4)--(6)) the continuous- motion variance can be written in frequency-integral form; for practical fitting adopt either the overdamped thermal or resonant/inertial parametrizations:
(a) Overdamped / thermal regime (no strong inertial resonance)
Varmot(vs)G2kBTK(vs).(D3a)\mathrm{Var}_{\rm mot}(v_s) \;\simeq\; \frac{|\mathbf{G}|^2\,k_B T}{K(v_s)}. \tag{D3a}
Here K(vs)K(v_s) is an effective restoring stiffness (may depend on vsv_s via flow-induced softening), and G|\mathbf{G}| the geometric sensitivity of the loop.
(b) Resonant / inertia-sensitive regime (vortex mass mvm_v important)
Varmot(vs)CresG2S(0(vs))mv(vs)20(vs)2eff(vs),(D3b)\mathrm{Var}_{\rm mot}(v_s) \;\simeq\; C_{\rm res}\,\frac{|\mathbf{G}|^2\,S_\xi\big(\omega_0(v_s)\big)}{m_v(v_s)^2\,\omega_0(v_s)^2\,\Gamma_{\rm eff}(v_s)}, \tag{D3b}
with 0(vs)=K(vs)/mv(vs)\omega_0(v_s)=\sqrt{K(v_s)/m_v(v_s)}, eff/mv\Gamma_{\rm eff}\sim\eta/m_v the linewidth, S()S_\xi(\omega) bath spectrum, and CresC_{\rm res} an O(1)\mathcal O(1) prefactor from mode projection. This expression predicts strong, nonmonotonic sensitivity as control shifts 0\omega_0 across bath spectral features.
b. Slip-induced variance (phase-slip contribution)
If phase slips occur as Poisson events at rate (vs)\Gamma(v_s) with per-event phase-kick variance slip2\sigma_{\rm slip}^2 (averaged over spatial positions relative to the loop), then over measurement time TT
Varslip(vs;T)=(vs)Tslip2.(D4)\mathrm{Var}_{\rm slip}(v_s;T) \;=\; \Gamma(v_s)\;T\;\sigma_{\rm slip}^2. \tag{D4}
For quantum tunneling / instanton processes, take
(vs)0exp(Sinst(vs)),or (thermal)(vs)0(T)exp(E(vs)kBT).(D5)\Gamma(v_s) \;\simeq\; \Gamma_0 \exp\!\Big(-\frac{S_{\rm inst}(v_s)}{\hbar}\Big), \quad\text{or (thermal)}\quad \Gamma(v_s)\simeq \Gamma_0^{(T)}\exp\!\Big(-\frac{\Delta E(v_s)}{k_B T}\Big). \tag{D5}
Both forms predict strong, typically super-exponential sensitivity of slip-noise to control vsv_s.
c. Amplitude prefactor V0(vs)V_0(v_s)
Include a slow variation to account for population imbalance or detector response:
V0(vs)V(1+a1vs+a2vs2)1.(D6)V_0(v_s) \simeq V_* \big(1 + a_1 v_s + a_2 v_s^2\big)^{-1}. \tag{D6}
Often V0V_0 can be taken constant across a narrow scan.

C. Limiting regimes and distinctive signatures

From (D1)--(D6) we can extract the principal, falsifiable signatures:

1. Oscillatory visibility with reproducible nodes.
When Varmot+Varslip\mathrm{Var}_{\rm mot}+\mathrm{Var}_{\rm slip} is small enough to leave the carrier visible, the cos((vs))|\cos(\overline{\Phi}(v_s))| term produces oscillations and nodes at =2+n\overline{\Phi}=\tfrac\pi2 + n\pi. Decoherence-only models cannot produce parameter-tuned zeros with reproducible phases.
2. Nonmonotonic dependence due to inertial resonance.
In the resonant regime (D3b) visibility can dip sharply when 0(vs)\omega_0(v_s) crosses spectral peaks of the bath; this produces sharp resonant features (not simple monotonic decay).
3. Measurement-time dependence (slip-dominated regime).
If slip noise dominates, visibility depends explicitly on integration time TT through (D4). Varying TT will change the observed V(vs;T)V(v_s;T) in a predictable way --- a diagnostic not expected for time-local dephasing with a fixed rate independent of sampled event statistics.
4. Geometry dependence.
G|\mathbf{G}| encodes loop geometry; different loop areas yield different sensitivities (D3a/b,D4). Observing geometry-dependent suppression or event statistics supports holonomy interpretation.
5. Cross-correlation with vortex observables.
Direct imaging of vortices should correlate event rates (vs)\Gamma(v_s) with visibility dips and with non-Gaussian phase statistics.

D. Fitting strategy, parameter extraction, and falsification test

1. Data set: measure fringe visibility VV and phase ^\hat\Phi across a grid of vsv_s values and (when possible) integration times TT. Also measure (or infer) vortex resonance 0(vs)\omega_0(v_s), mv(vs)m_v(v_s), and bath spectrum S()S_\xi(\omega) where possible.
2. Step 1 --- phase (carrier) fit: fit ^(vs)\hat\Phi(v_s) to (D2) to estimate ,0\beta,\Phi_0. Test null =0\beta=0. Significant nonzero \beta is evidence for deterministic holonomy.
2. Step 2 --- visibility envelope fit: fit visibility amplitude (absolute value removed of cos|\cos| if phases known) to exp[12(Varmot+Varslip)]\exp[-\tfrac12(\mathrm{Var}_{\rm mot}+\mathrm{Var}_{\rm slip})] using parametric forms (D3a/D3b plus D4). Use independent measurements of mv,0m_v,\omega_0 to constrain D3b when present.
3. Model comparison: compare full InterTop model (D1--D6) against purely monotonic decoherence models Vdec(vs)=V0(d)exp[dec(vs)]V_{\rm dec}(v_s)=V_0^{(d)}\exp[-\Gamma_{\rm dec}(v_s)] using AIC/BIC and likelihood-ratio tests. Examine residuals for oscillatory power.
4. Time-scaling test: if slip term included, verify predicted linear-in-TT variance scaling by measuring V(vs;T)V(v_s;T) at multiple TT.
5. Geometry and imaging cross-checks: vary probe loop geometry and correlate with visibility sensitivity and with direct vortex imaging; confirm predicted dependence on G|\mathbf{G}| and on (vs)\Gamma(v_s).
Falsification rule (operational): within the experimental sensitivity region (characterized by reachable vsv_s span, SNR, and maximum TT), reject the class of InterTop models with nonzero \beta and slip-sensitive variance if:

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun