Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Solution for Hodge Conjecture: Heuristic CAS 6 Approach 2.0

22 September 2025   16:02 Diperbarui: 22 September 2025   16:02 23
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

These mappings are functorial: a diagram in \(\mathbf{Var}\) induces commutative squares in \(\mathbf{LayeredVect}\), preserving HC's inter-domain relations.

D. Rationale for Formal Heuristics, with Propositions on Compatibility with Known Theorems

Formal heuristics transform intuitive analogies into verifiable structures, aligning with "post-rigorous" mathematics where informal insights harden into formalisms0c92ee. In algebraic geometry, this is exemplified by mechanized proofs in Lean for schemes353a78, extending to heuristics for conjectures like HC. CAS-6's rationale is to diagnose obstructions (e.g., low \(P\)) and guide constructions (e.g., via \(S\)), testable computationally.

Proposition 2.1 (Compatibility with Lefschetz): For \(p=1\), CAS-6 closure holds: \(P(X)_1 = 1\) and \(S(X)_1 \to O(X)_1\) is an isomorphism, implying HC via the (1,1)-theorem. Proof: By Lefschetz, \(\dim W(X)_1 = \dim (H^{1,1} \cap H^2(X, \mathbb{Q}))\), so \(P=1\); stability follows from Picard group deformation invariance3b02e9.

Proposition 2.2 (Product Compatibility): For abelian varieties like elliptic products, tensor closure implies \(P(X \times Y)_p = P(X)_i \cdot P(Y)_j\) for decompositions, aligning with known HC cases033ee1.

These propositions validate CAS-6 against theorems, enabling heuristic predictions for open cases like K3 products.

III. Quantitative Metrics and Computational Tools

A. Definitions of Closure Probability, Stability Invariants, and Output Realizations

To operationalize the CAS-6 framework for heuristic analysis of the Hodge Conjecture (HC), we introduce quantitative metrics derived from the layered structure. These metrics transform the categorical mappings into computable invariants, enabling diagnostics of alignment across domains.

Closure Probability: For a variety \(X\) and codimension \(p\), the closure probability \(P(X)_p\) is defined as the ratio

   \[

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun