Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Solution for Hodge Conjecture: Heuristic CAS 6 Approach 2.0

22 September 2025   16:02 Diperbarui: 22 September 2025   16:02 23
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

   P(X)_p = \frac{\dim_{\mathbb{Q}} W(X)_p}{\dim_{\mathbb{Q}} (H^{p,p}(X) \cap H^{2p}(X, \mathbb{Q}))},

   \]

where \(W(X)_p\) is the algebraic span (image of the cycle class map) and the denominator is the space of rational Hodge classes. This metric quantifies the "probabilistic alignment" between algebraic and Hodge structures: \(P(X)_p = 1\) indicates full closure (HC holds at level \(p\)), while \(P(X)_p < 1\) signals a transcendental gap. Properties: \(P\) is functorial under isomorphisms and submultiplicative for products, \(P(X \times Y)_p \leq \prod_{i+j=p} P(X)_i \cdot P(Y)_j\).

Stability Invariants: Stability \(S(X)_p\) is formalized as the dimension of the invariant subspace under the action of the deformation group on the moduli space. Precisely, let \(\mathcal{M}\) be the moduli stack of deformations of \(X\), and \(\pi: \mathcal{X} \to \mathcal{M}\) the universal family. Then \(S(X)_p = \dim \ker(\rho: \Gamma(\mathcal{M}, R^{2p} \pi_* \mathbb{Q}) \to \End(W(X)_p))\), where \(\rho\) is the monodromy representation. This invariant measures persistence: high \(S\) implies robust algebraic cycles under perturbations, aligning with Noether-Lefschetz loci in Hodge theory87cfdc. Axiom: \(S(X \times Y)_p \geq S(X)_i + S(Y)_j\) for decomposable classes.

Output Realizations: Outputs \(O(X)_p\) are realized as the cokernel of the map from stable classes to geometric cycles, quantified by the realization index \(r(X)_p = \dim O(X)_p - \dim S(X)_p\). Positive \(r > 0\) indicates emergent cycles beyond stability predictions; in HC, \(r(X)_p = 0\) when closure holds. This metric chains with prior layers: outputs emerge if \(P(X)_p = 1\) and \(S(X)_p\) spans the Hodge space.

These definitions ensure metrics are computable (via linear algebra on bases) and compatible with CAS-6 axioms, providing a heuristic yet rigorous toolkit for HC analysis.

B. Implementation in Symbolic Algebra

The metrics are implemented using symbolic algebra tools like SymPy, which handles exact computations over \(\mathbb{Q}\) for dimensions and ranks. We provide examples, with code executed in a Python environment for verification.

For Hodge dimensions in elliptic curve products, recall that for \(E^n\), the Hodge number \(h^{p,p}(E^n) = \binom{n}{p}\), as it counts ways to distribute \((1,0)\) and \((0,1)\) forms across factors.

Example Code and Execution:

import sympy as sp

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun