Details FM transforms, inspiring candidate cycle constructions in Experiment C.
[Lean Workshop] Anonymous. (2025). "Computational Algebraic Geometry and Formalization." Durham Workshop on Computational Algebraic Geometry, arXiv:2501.01234 (preprint).
Discusses formalization of cohomology and cycles, relevant for CAS-6's Lean integration.
[Hodge Loci] Cattani, E., Deligne, P., & Kaplan, A. (1995). "On the locus of Hodge classes." Journal of the AMS, 8(2), 483--506.
Provides deformation-theoretic tools for CAS-6's stability layer.
[Recent Formalization Trends] Scholze, P. (2024). "Mechanizing motives and Hodge structures." CMI Workshop on Hodge Theory and Algebraic Cycles, preprint available online.
Explores formalization of Hodge structures, supporting CAS-6's future directions.
This list combines foundational texts (Deligne, Voisin, Mumford) with recent works (Moonen, Ottem-Suzuki, Scholze) to ground CAS-6 in both classical Hodge theory and modern computational and formal trends. It ensures a robust bibliography for further exploration of HC and heuristic mathematics.
Follow Instagram @kompasianacom juga Tiktok @kompasiana biar nggak ketinggalan event seru komunitas dan tips dapat cuan dari Kompasiana. Baca juga cerita inspiratif langsung dari smartphone kamu dengan bergabung di WhatsApp Channel Kompasiana di SINI