Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Solution for Hodge Conjecture: Heuristic CAS 6 Approach 2.0

22 September 2025   16:02 Diperbarui: 22 September 2025   16:02 23
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Closure Metrics: Estimate \(P(X)_n\) to identify scaling of transcendental classes, potentially linking to Voisin's results on higher-dimensional obstructions.

These extensions would test CAS-6's scalability and its ability to handle varieties where HC remains open, potentially revealing patterns in cycle deficiencies.

B. Integration with Derived Categories and Lean Formalization

To enhance CAS-6's rigor and applicability, integration with derived categories and formal verification tools like Lean is a natural next step.

Derived Categories and Fourier-Mukai Transforms: The \(K3 \times K3\) experiment suggested Fourier-Mukai (FM) kernels as candidate cycles to address transcendental gaps. Derived categories \(D^b(X)\) provide a framework to formalize this:

Define FM transforms as functors between \(D^b(K3 \times K3)\) and \(D^b(X)\), mapping coherent sheaves to cycles via Chern classes.

Extend CAS-6's output layer (\(O\)) to include derived objects, where \(O(X)_p\) incorporates classes induced by FM kernels, potentially increasing \(\dim W(X)_p\).

Computationally, use software like Macaulay2 to simulate FM transforms, testing whether they close gaps (e.g., by computing ranks of induced cycle maps).

Recent work on derived categories for K3 surfaces suggests that FM transforms can generate non-divisorial cycles, which CAS-6 could quantify via updated closure probabilities.

Lean Formalization: Lean's mathlib library supports formalizing algebraic geometry, including schemes, cohomology, and cycle class maps. CAS-6's functorial structure is ideal for Lean:

Formalize the Functor: Define \(\mathcal{F}: \mathbf{Var} \to \mathbf{LayeredVect}\) in Lean, encoding axioms like tensor closure and functoriality.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun