Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Solution for Hodge Conjecture: Heuristic CAS 6 Approach 2.0

22 September 2025   16:02 Diperbarui: 22 September 2025   16:02 23
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Summary of formalized insights. Implications for resolving HC and broader conjectural mathematics.

References

Comprehensive list, including classics (Deligne, Voisin) and recent works (e.g., spectral analysis, formalization in Lean).

I. Introduction

A. Background on the Hodge Conjecture and Millennium Problems

In the year 2000, the Clay Mathematics Institute established the Millennium Prize Problems, a collection of seven profound unsolved questions in mathematics, each carrying a prize of one million dollars for a correct resolution. These problems were selected for their depth, breadth, and potential to catalyze transformative advances across mathematical disciplines. They encompass diverse areas: the Navier--Stokes equations in fluid dynamics, the P versus NP problem in computational complexity, the Riemann Hypothesis in number theory, the Birch and Swinnerton-Dyer Conjecture in arithmetic geometry, the Yang--Mills existence and mass gap in quantum field theory, the Poincar Conjecture (resolved by Grigori Perelman in 2003), and the Hodge Conjecture (HC) in algebraic geometry.

The Hodge Conjecture, formulated by William Vallance Douglas Hodge in the mid-20th century, stands as a cornerstone of algebraic geometry, bridging topology, algebra, and geometry. Let \(X\) be a smooth projective variety over \(\mathbb{C}\) of complex dimension \(n\). The singular cohomology group \(H^{2p}(X, \mathbb{Q})\) admits a Hodge decomposition over \(\mathbb{C}\):

\[

H^{2p}(X, \mathbb{C}) = \bigoplus_{r+s=2p} H^{r,s}(X),

\]

where \(H^{r,s}(X)\) comprises classes representable by differential forms of type \((r,s)\). A rational class \(\gamma \in H^{2p}(X, \mathbb{Q})\) is a Hodge class if its complexification lies in \(H^{p,p}(X)\). Algebraic cycles of codimension \(p\), forming the group \(Z^p(X)\), induce classes via the cycle class map:

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun