Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Solution for Hodge Conjecture: Heuristic CAS 6 Approach 2.0

22 September 2025   16:02 Diperbarui: 22 September 2025   16:02 23
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Interaction Outputs \(O(X)\): The geometric realization space, \(O(X)_p = CH^p(X) \otimes \mathbb{Q}\), with morphisms to \(W(X)_p\) via \(\cl_p\). Axioms: Surjectivity conjecture (equivalent to HC), and emergence from prior layers: \(O(X)_p\) is generated by stable outputs from \(S(X)_p\).

Global Axioms for CAS-6:

Closure Axiom: The composition \(O \circ S \circ P \circ W \circ C \circ L\) is surjective onto rational Hodge classes.

Tensor Closure: For products, \(\mathcal{F}(X \times Y) \cong \mathcal{F}(X) \otimes \mathcal{F}(Y)\), preserving layers.

Functoriality: \(\mathcal{F}\) commutes with pullbacks and pushforwards in mixed Hodge structures.

These definitions ensure CAS-6 is a rigorous model, amenable to computational checks (e.g., via SymPy for dimension ratios).

C. Mappings to HC Domains: Topology (Levels/Configurations), Algebra (Weights/Probabilities), Geometry (Stability/Outputs)

The HC domains map categorically to CAS-6 layers as follows:

Topology to Levels/Configurations (\(L/C\)): Topology provides the cohomological skeleton. Formally, the functor restricts to \(L(X) \oplus C(X)\), isomorphic to the rational Hodge filtration. For HC, this maps the decomposition \(H^{2p}(X, \mathbb{Q}) \cap H^{p,p}(X)\) to configurable nodes, with Knneth ensuring product decompositions2e7fa1.

Algebra to Weights/Probabilities (\(W/P\)): Algebra handles rational structures. The map embeds \(W(X)\) into the span of cycle classes, with \(P(X)\) quantifying surjectivity via the probability metric. In HC terms, full alignment (\(P=1\)) implies the conjecture holds, as in codimension 1.

Geometry to Stability/Outputs (\(S/O\)): Geometry realizes classes algebraically. The map projects to \(S(X) \to O(X)\), where stability ensures persistence (e.g., via Noether-Lefschetz loci3d8598), and outputs confirm existence.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun