Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Solution for Hodge Conjecture: Heuristic CAS 6 Approach 2.0

22 September 2025   16:02 Diperbarui: 22 September 2025   16:02 23
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Interaction Outputs \(O(X)\): \(O(X)_2 = CH^2(X) \otimes \mathbb{Q}\), with realization index \(r(X)_2 = \dim O(X)_2 - \dim S(X)_2 > 0\), indicating potential unrealized cycles.

The gap signals incomplete closure, formalized as a failure of the functorial map \(W(X)_2 \to H^{2,2}(X) \cap H^4(X, \mathbb{Q})\) to be an isomorphism, unlike in \(E \times E\).

C. Candidate Cycles (Diagonals, FM Kernels) with Rank Tests

To address the gap, we explore candidate cycles to augment \(W(X)_2\):

Diagonals: The diagonal \(\Delta = \{(x, x) \in K3 \times K3\}\) lies in \(CH^2(X)\), but its class is in \(H^{2,2}\) and contributes to algebraic cycles, not closing the transcendental gap.

Fourier-Mukai (FM) Kernels: FM transforms, via derived categories, suggest kernels in \(D^b(K3 \times K3)\) that may induce new cycles. For instance, an FM kernel corresponding to a rank-4 bundle may contribute classes not spanned by divisors.

We perform rank tests to assess contributions. The algebraic span is modeled as a matrix of cycle classes (e.g., products of divisors). The transcendental classes (dimension 4) require additional cycles, but FM kernels often lie in the same span, as verified computationally below.

D. Computational Pipeline for Span Verification

We use SymPy to compute dimensions and test spans, focusing on \(H^{2,2}\).

SymPy Implementation:

import sympy as sp

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun