Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Solution for Hodge Conjecture: Heuristic CAS 6 Approach 2.0

22 September 2025   16:02 Diperbarui: 22 September 2025   16:02 23
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

D. Implications for Heuristic Epistemology

The philosophical bases of CAS-6 contribute to the epistemology of experimental mathematics, where computational and heuristic methods complement rigorous proofs. By framing existence as interaction, CAS-6 aligns with relational epistemologies that prioritize observable effects (e.g., cycle class maps) over absolute ontology. Gdel's theorems underscore the necessity of such heuristics: when formal systems are incomplete, as in HC's transcendental challenges, heuristic frameworks like CAS-6 offer a way to explore truths through quantifiable interactions.

This epistemology has broader implications for conjectural mathematics. For HC, CAS-6's diagnostics (e.g., low \(P\) in \(K3 \times K3\)) guide cycle construction, while its philosophical grounding suggests similar approaches for other conjectures, such as the Tate Conjecture or Birch and Swinnerton-Dyer Conjecture, where systemic incompleteness may also arise. The integration of computational tools (SymPy, SageMath) and formal verification (Lean) further bridges the gap between heuristic exploration and rigorous validation, embodying a synthesis of intuition and formalism.

E. Philosophical Testing of the Hodge Conjecture

The CAS-6 framework, with its relational ontology asserting that existence is contingent upon interaction, and its Gdel-inspired recognition of systemic incompleteness, provides a philosophical lens to test the Hodge Conjecture (HC). The HC posits that every rational Hodge class in \(H^{p,p}(X) \cap H^{2p}(X, \mathbb{Q})\) on a smooth projective variety \(X\) is algebraic, i.e., lies in the image of the cycle class map \(\cl_p: CH^p(X) \otimes \mathbb{Q} \to H^{2p}(X, \mathbb{Q})\). We evaluate this conjecture philosophically by interpreting existence through interactions within the CAS-6 functor \(\mathcal{F}: \mathbf{Var} \to \mathbf{LayeredVect}\), and by viewing transcendental gaps as Gdelian truths---statements that are true in the cohomological system but unprovable within the algebraic system of cycles.

Relational Existence and Interaction Traces

The CAS-6 principle that "something exists if it interacts with something else" reframes HC as a question of whether every rational Hodge class interacts algebraically via \(\cl_p\). In the functorial structure of CAS-6, this interaction is quantified across layers:

The interaction level (\(L(X) = H^{2p}(X, \mathbb{Q})\)) and configuration (\(C(X)_p = H^{p,p}(X) \cap H^{2p}(X, \mathbb{Q})\)) establish the cohomological context where Hodge classes exist topologically.

The weights (\(W(X)_p = \im(\cl_p)\)) and probabilities (\(P(X)_p = \dim W(X)_p / \dim (H^{p,p}(X) \cap H^{2p}(X, \mathbb{Q}))\)) measure the strength of algebraic interaction. A value of \(P = 1\) indicates full interaction, affirming algebraic existence, while \(P < 1\) suggests classes lacking sufficient algebraic traces.

The stability (\(S(X)_p\)) and outputs (\(O(X)_p = CH^p(X) \otimes \mathbb{Q}\)) layers ensure that only classes with persistent interactions (under deformation) and geometric realizations are deemed existent.

In Experiment A (\(E \times E\), \(p=1\)) and Experiment B (\(E^4\), \(p=2\)), CAS-6 computes \(P(X)_p = 1\), indicating that all Hodge classes interact fully with algebraic cycles (e.g., divisors like \(E \times \{pt\}\)), confirming HC via categorical isomorphisms \(W(X)_p \to H^{p,p}(X) \cap H^{2p}(X, \mathbb{Q})\). These interactions, validated computationally via SymPy, establish the algebraic existence of these classes, as supported by the Lefschetz (1,1)-theorem and properties of abelian varieties.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun