Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Lab-Based Realization of a Blink Universe via Magnon and Quantum Vacuum Analog System

17 September 2025   17:18 Diperbarui: 17 September 2025   17:18 95
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Points or loops where phase winds by 2n2\pi n2n (with nZn \in \mathbb{Z}nZ): indicating quantized vortices
Phase singularities where amplitude vanishes A(x,t)0A(x,t) \to 0A(x,t)0: locations of topological charge
Persistent vortex-antivortex pairs, forming as a consequence of high-energy blink excitation
These structures resemble topological excitations in superfluids and Bose-Einstein condensates, where phase continuity constraints enforce quantization.

2. Soliton and Bubble-Like Configurations

Nonlinear coupling I2I\lambda |I|^2 II2I supports the formation of soliton-like envelopes---spatially localized, temporally coherent structures with preserved shape due to balance between nonlinearity and dispersion:

1D simulations: bright and dark solitons, depending on pulse sign
2D/3D simulations: bubble-like shells or filamentary strings, some enclosing nontrivial topologies
These solitonic textures act as non-perturbative field configurations, potentially encoding information memory or field parity. They survive long after the initiating blink has decayed.

3. Topological Charge and Stability

To characterize these excitations, we define a topological charge density in 2D:

q(x,y,t)=12(xyyx)q(x,y,t) = \frac{1}{2\pi} \left( \partial_x \phi \cdot \partial_y \phi - \partial_y \phi \cdot \partial_x \phi \right)q(x,y,t)=21(xyyx)

And integrated topological charge:

Q=q(x,y,t)dxdyQ = \int q(x,y,t)\, dx\, dyQ=q(x,y,t)dxdy

Results:

In regions with isolated vortices: Q1Q \approx \pm 1Q1
For vortex-antivortex pairs: Q0Q \to 0Q0, but internal tension preserved
In turbulent excitation: complex patterns of transiently bound topological clusters
These charges are conserved under continuous deformation, showcasing topological robustness of the emergent features.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun