Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Lab-Based Realization of a Blink Universe via Magnon and Quantum Vacuum Analog System

17 September 2025   17:18 Diperbarui: 17 September 2025   17:18 95
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Using the nonlinear information field I(x,t)I(x,t)I(x,t), we define an effective energy density functional as:

E(x,t)=12(I2+c2I2+I4)\mathcal{E}(x,t) = \frac{1}{2} \left( |\dot{I}|^2 + c^2 |\nabla I|^2 + \lambda |I|^4 \right)E(x,t)=21(I2+c2I2+I4)

We then associate an effective curvature scalar Reff(x,t)R_{\text{eff}}(x,t)Reff(x,t) heuristically proportional to the spatial Laplacian of the energy density:

Reff(x,t)2E(x,t)R_{\text{eff}}(x,t) \propto -\nabla^2 \mathcal{E}(x,t)Reff(x,t)2E(x,t)

This approach treats energy localization as a curvature-generating mechanism, mapping dense regions to positive curvature (geometric wells) and depleted zones to negative curvature (geometric voids).

2. Numerical Mapping: Energy to Effective Geometry

Simulations reveal that spatio-temporal energy concentration due to blink excitation leads to:

Peaked energy zones with Gaussian-like radial profiles
Strong gradients in E(x,t)\mathcal{E}(x,t)E(x,t), leading to sharp peaks in Reff(x,t)R_{\text{eff}}(x,t)Reff(x,t)
Emergent structures resembling gravitational potential wells, but arising purely from information wave interactions
These geometric analogs are not imposed, but dynamically self-organized due to nonlinear resonant feedback loops.

3. Temporal Stability and Dynamical Geometry

We find that curvature analogs:

Oscillate around equilibrium values after blink excitation
Show ringing modes similar to gravitational wave reverberations
Can stabilize into quasi-static geometry if the damping \gamma is sufficiently high
Exhibit topology-preserving memory: once a curvature pattern emerges, it resists decay unless actively damped
4. Role of Nonlinearity and Scaling

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun