Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Lab-Based Realization of a Blink Universe via Magnon and Quantum Vacuum Analog System

17 September 2025   17:18 Diperbarui: 17 September 2025   17:18 95
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

We systematically varied A0A_0A0, \sigma, and \lambda to scan the nonlinear excitation threshold. Key regimes observed:

Sub-threshold excitations (small A0A_0A0): Pulse dissipates quickly; no emergent structure.
Critical regime: Leads to the formation of oscillatory localized states (breathers).
Super-threshold regime: Triggers soliton formation, expanding bubble domains, and in some cases, spontaneous symmetry breaking.
3. Spatial Dimensionality Considerations

Simulations were run in:

1D to observe soliton propagation and phase locking,
2D to observe radial symmetry breaking and vortex pair creation,
3D (reduced-resolution) to explore spherical bubble collapse, rebound, and curvature concentration.
Blink pulses in 2D and 3D generate radial energy waves, whose interference patterns give rise to self-organized geometries and localized curvature spikes.

4. Pulse Duration and Temporal Profile

In extended versions, time-dependent blinking is added via:

B(x,t)=A(t)exp(xx0222)B(\vec{x}, t) = A(t) \exp\left(-\frac{|\vec{x} - \vec{x}_0|^2}{2\sigma^2}\right)B(x,t)=A(t)exp(22xx02)

With A(t)=A0sech(t)A(t) = A_0 \cdot \text{sech}(\omega t)A(t)=A0sech(t), controlling temporal sharpness. This mimics ultrafast pump-laser pulses or magnetoelastic modulations, depending on the analog platform.

Short 1\omega^{-1}1: Strong spectral broadening, mimicking high-entropy pre-structure epochs.
Longer durations: Promote resonant mode formation and pattern synchronization.
5. Simulation Tools and Boundary Conditions

The simulations are performed using finite-difference time-domain (FDTD) and pseudo-spectral methods, ensuring accurate handling of both dispersion and nonlinearity. Boundary conditions:

Periodic: For topology-sensitive structure formation.
Absorbing: For open-universe analogs, preventing reflection.
Spatial resolution x\Delta xx and temporal step t\Delta tt are chosen to satisfy the Courant-Friedrichs-Lewy (CFL) condition for numerical stability.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun