Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Lab-Based Realization of a Blink Universe via Magnon and Quantum Vacuum Analog System

17 September 2025   17:18 Diperbarui: 17 September 2025   17:18 95
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

These higher-dimensional effects enable emulation of:

Curved spacetime propagation,
Metric singularities from information collapse,
Horizons or event-like boundaries where waves can no longer escape (if dissipation is high enough).
This sets the stage for creating laboratory analogs of early universe conditions, where vacuum fluctuation and field excitation interplay to produce spatial structure and geometric response.

D. Analytical Behavior and Topological Excitations

Soliton-like States, Energy Bubbles, and Curvature Spikes

In the nonlinear information field dynamics governed by the equation:

2It2+Itc22I+I2I=B(x,t)\frac{\partial^2 I}{\partial t^2} + \gamma \frac{\partial I}{\partial t} - c^2 \nabla^2 I + \lambda |I|^2 I = B(\vec{x}, t)t22I+tIc22I+I2I=B(x,t)

specific regimes of the system support the formation of topologically stable, self-localized structures, akin to solitons, skyrmions, and energy bubbles. These structures are not merely mathematical curiosities but correspond to physically meaningful excitations that conserve localized energy and can sustain their identity over time and propagation distance, even under dissipative or noisy conditions.

1. Soliton-Like States

Solitons arise when nonlinear self-focusing (from the I2I\lambda |I|^2 II2I term) precisely balances the dispersive spreading (c22Ic^2 \nabla^2 Ic22I).

In 1D, the governing equation reduces under stationary ansatz I(x,t)=(x)eitI(x,t) = \phi(x) e^{-i\omega t}I(x,t)=(x)eit, yielding:
2(x)i(x)c2d2dx2+2=B(x)- \omega^2 \phi(x) - i \gamma \omega \phi(x) - c^2 \frac{d^2 \phi}{dx^2} + \lambda |\phi|^2 \phi = B(x)2(x)i(x)c2dx2d2+2=B(x)

In the absence of driving ( B(x)=0B(x) = 0B(x)=0 ) and small dissipation, this is formally analogous to the nonlinear Schrdinger equation (NLSE), which is known to support bright and dark solitons depending on the sign of \lambda. For >0\lambda > 0>0, bright solitons represent localized packets of concentrated information energy.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun