Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Multilayer Multiverse with Fractal Internal Structure and Topological Interference: a Unified Cosmological Paradigm

17 September 2025   08:52 Diperbarui: 17 September 2025   08:52 70
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

Prediction: Repetitive or modulated gravitational wave signals due to inter-layer topological interference during massive merger events.
Test: High-precision post-merger waveform analysis using data from LIGO-Virgo-KAGRA and future missions like LISA and Einstein Telescope.
(e) Fractal-Induced Galaxy Clustering and Spin Bias

Prediction: Persistent fractal scaling in matter distributions beyond expected scales of homogeneity; angular momentum distribution biased by fractal initial conditions.
Test: Statistical fractal analysis of deep-field galaxy surveys (e.g., COSMOS, Euclid) and spin vector catalog studies with polarization-sensitive instruments.
2. Next Steps in Observational Cosmology

To validate and refine the BMF model, several empirical priorities emerge:

Void-focused mapping: Use gravitational lensing and weak shear surveys to reconstruct void geometry and correlate with local Hubble variation.
Redshift drift campaigns: Develop long-baseline, high-stability spectroscopic facilities capable of detecting minute cosmological drifts over 10--30 years.
Fractal dimension surveys: Employ machine learning to classify structure self-similarity and compute local Hausdorff dimensions across various cosmic environments.
Topological lensing signatures: Search for lensing patterns that deviate from general relativity expectations in regions of hypothesized layer boundaries.
3. Theoretical Development and Expansion

The BMF framework also invites deeper formal investigations:

Quantum gravity coupling: Explore how BMF topology could be embedded in loop quantum gravity, causal set theory, or string landscape models.
Information-theoretic entropy flow: Further develop entropy dynamics and holographic information exchange across blink events and layer boundaries.
Non-equilibrium cosmological thermodynamics: Model how local violations of equilibrium due to layer interference may drive galaxy formation and entropy gradients.
Mathematical topology of layered manifolds: Rigorously classify allowed topological layer configurations consistent with Einstein field equations.
This framework calls for a rethinking of cosmogenesis, cosmic topology, and structure formation as interdependent processes unified by geometry, quantum dynamics, and fractal order. The coming decade of high-precision cosmology, gravitational wave astronomy, and information-theoretic physics offers a fertile ground to test these bold predictions---and perhaps to uncover deeper truths about the architecture of reality.

References

1. Hubble Tension and Cosmological Parameter Discrepancies

Riess, A. G., et al. (2019). Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond CDM. ApJ, 876(1), 85.
Freedman, W. L. (2021). Measurements of the Hubble Constant: Tensions in Perspective. ApJ, 919(1), 16.
Verde, L., Treu, T., & Riess, A. G. (2019). Tensions between the Early and the Late Universe. Nature Astronomy, 3, 891--895.
Di Valentino, E., et al. (2021). Cosmology Intertwined: A Review of the H Tension. Class. Quant. Grav., 38(15), 153001.
2. Void Cosmologies and Lematre--Tolman--Bondi (LTB) Models

Bolejko, K., Clrier, M. N., & Krasinski, A. (2011). Inhomogeneous Cosmological Models: Exact Solutions and Their Applications. Class. Quant. Grav., 28(16), 164002.
Marra, V., Kolb, E. W., Matarrese, S., & Riotto, A. (2007). On Cosmological Observables in a Swiss-Cheese Universe. Phys. Rev. D, 76(12), 123004.
Valkenburg, W. (2012). Perceiving the Void: Cosmological Constraints from Supernovae and the CMB. JCAP, 2012(01), 047.
Clarkson, C., et al. (2012). Does the Growth of Structure Affect Our Dynamical Models of the Universe? The Averaging, Backreaction and Fitting Problems in Cosmology. Rep. Prog. Phys., 74, 112901.
3. Quantum Cosmogenesis and No-Boundary Proposals

Hartle, J. B., & Hawking, S. W. (1983). Wave Function of the Universe. Phys. Rev. D, 28(12), 2960.
Vilenkin, A. (1982). Creation of Universes from Nothing. Phys. Lett. B, 117(1), 25--28.
Linde, A. D. (1984). Quantum Creation of an Inflationary Universe. Lett. Nuovo Cim., 39(2), 401--405.
Aguirre, A., & Gratton, S. (2002). Steady-State Eternal Inflation. Phys. Rev. D, 65(8), 083507.
Feldbrugge, J., Lehners, J. L., & Turok, N. (2017). No Smooth Beginning for Spacetime. Phys. Rev. Lett., 119(17), 171301.
4. Fractal Geometry and Large-Scale Structure

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun