Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Multilayer Multiverse with Fractal Internal Structure and Topological Interference: a Unified Cosmological Paradigm

17 September 2025   08:52 Diperbarui: 17 September 2025   08:52 70
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

(x)\theta(x) is a topological phase field, encapsulating the geometric and causal differences between overlapping spacetime layers at point xx,
The integral runs over a nontrivial spacetime foliation, representing overlapping regions between layers ij\Sigma_i \cap \Sigma_j \neq \emptyset,
The interference term acts as a coherence measure between multiple field configurations.
This expression resembles the structure of Berry phases, Chern-Simons terms, or theta-vacua in quantum field theory.

3. Topological Phase Field and Coupling Structure

The phase field (x)\theta(x) arises from holonomy and monodromy effects as one traverses different layers with distinct metric tensors g(i)g_{\mu\nu}^{(i)}. We model it as:

(x)=i<jijij(x)\theta(x) = \sum_{i<j} \alpha_{ij} \, \Omega_{ij}(x)

where:

ij(x)\Omega_{ij}(x) is a relative geometric phase between layers i\Sigma_i and j\Sigma_j,
ij\alpha_{ij} is a coupling coefficient that encodes the strength of inter-layer interaction, potentially dependent on curvature, topology, or homology class differences.
Each ij\Omega_{ij} can be interpreted via Wilson loop integrals:

ij(x)=ijA(i)(x)A(j)(x)dx\Omega_{ij}(x) = \oint_{\gamma_{ij}} A_\mu^{(i)}(x) - A_\mu^{(j)}(x) \, dx^\mu

with A(i)A_\mu^{(i)} being connection 1-forms on each layer, capturing affine or gauge-geometric properties.

4. Effective Action and Interference Potential

We propose an effective action term incorporating the interference field into the total gravitational Lagrangian:

Sinterf=d4x[12interfinterfVinterf()]S_{\text{interf}} = \int d^4x \, \left[ \frac{1}{2} \partial_\mu \Phi_{\text{interf}} \partial^\mu \Phi_{\text{interf}}^* - V_{\text{interf}}(\theta) \right]

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun