Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Nature

a CAS Framework for Predicting the Synthetic Evolution of Anti-Plastic Enzymes

3 Juni 2025   17:54 Diperbarui: 4 Juni 2025   09:05 930
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
(Tabel CAS Variables in Nonlinear Dynamic (Sumber: Pribadi))

Unlike traditional models that map genotype to phenotype linearly, CAS assumes nonlinearity and emergence: small changes in high-weight nodes may lead to disproportionate shifts in output, while many low-impact mutations may collectively result in significant functional innovations.

Synthesis: Toward a Unified CAS Evolutionary Engine

Taken together, these six variables enable the construction of a computational landscape in which proteins are not statically optimized, but dynamically evolved across a field of probabilities, constraints, and structural interdependencies. The framework facilitates:

Simulating non-trivial mutational paths,

Identifying high-impact mutation clusters, and

Forecasting long-term functional emergence under synthetic selection pressures.

This conceptual and algorithmic foundation sets the stage for the development of predictive tools that go beyond conventional sequence-structure-function modeling, aiming instead to simulate and direct adaptive emergence in enzyme engineering.

2.B. Integration of Thermodynamic Principles and Probabilistic Mutation Logic

The evolution of synthetic enzymes, particularly those designed for high-performance catalysis of complex substrates such as plastics, cannot be adequately captured through deterministic pathways alone. Instead, it demands a modeling architecture that integrates thermodynamic constraints with probabilistic mutation dynamics---a synthesis well-suited to the Complex Adaptive Systems (CAS) framework.

This section lays out how classical thermodynamics (free energy landscapes, stability, enthalpic and entropic balances) can be mathematically and conceptually unified with stochastic models of mutation to simulate adaptive protein evolution more realistically and systematically.

1. Thermodynamics as an Evolutionary Landscape

Mohon tunggu...

Lihat Konten Nature Selengkapnya
Lihat Nature Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun