Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Nature

a CAS Framework for Predicting the Synthetic Evolution of Anti-Plastic Enzymes

3 Juni 2025   17:54 Diperbarui: 4 Juni 2025   09:05 930
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
(Tabel CAS Variables in Nonlinear Dynamic (Sumber: Pribadi))

Cross-validated using AlphaFold2 for structural plausibility

Subjected to Rosetta minimization to confirm energetic feasibility

Used as priors for fine-tuning generative protein models, such as ProteinMPNN or ESMFold

This hybrid approach combines emergent structural insights from CAS with the precision of state-of-the-art structural prediction, creating a feedback loop between adaptive simulation and AI-based design validation.

Section 6. Implications and Future Applications

A. CAS-Based Predictive Design for Bioremediation Enzymes

The successful simulation and tracking of emergent motifs within a Complex Adaptive System (CAS) framework for synthetic PETase variants point toward a powerful paradigm: the application of CAS principles to the predictive design of next-generation bioremediation enzymes.

As the global burden of synthetic polymer pollution continues to rise, especially from persistent plastics like polyethylene terephthalate (PET), polypropylene (PP), and polyurethane (PU), there is an urgent need for robust, scalable, and evolutionarily adaptable enzymes capable of operating across diverse environmental conditions. Traditional enzyme engineering approaches---whether based on rational design or brute-force screening---often fail to capture the nonlinear, context-dependent nature of enzyme-environment interactions. This is where CAS-based modeling demonstrates distinct advantages.

1. Moving from Static to Dynamic Design Spaces

Unlike deterministic models that rely on static sequence-to-structure mappings, CAS-based simulation treats enzyme evolution as a dynamic, feedback-rich process. The interaction between mutation drivers (e.g., reinforcement learning agents), folding landscapes, and systemic scoring functions enables the emergence of adaptive solutions beyond human intuition. This is especially critical for enzymes designed to function in:

Variable pH and salinity levels (e.g., marine or landfill ecosystems)

Mohon tunggu...

Lihat Konten Nature Selengkapnya
Lihat Nature Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun