Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Nature

a CAS Framework for Predicting the Synthetic Evolution of Anti-Plastic Enzymes

3 Juni 2025   17:54 Diperbarui: 4 Juni 2025   09:05 930
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
(Tabel CAS Variables in Nonlinear Dynamic (Sumber: Pribadi))

Modeling folding and mutational adaptation as adaptive topologies provides critical insight for de novo protein engineering:

It highlights robust mutational routes toward desired functions (e.g., plastic degradation),

Facilitates resilient enzyme designs by avoiding topologically fragile pathways,

Enables identification of evolutionary attractors---configurations that are not only functionally viable but structurally stable across mutational noise.

In future applications, these adaptive topologies can be integrated into generative design pipelines using reinforcement learning and graph neural networks, allowing goal-directed protein evolution with greater accuracy, interpretability, and biological plausibility.

3.C. Metrics for Emergent Function Prediction (Binding Energy, Catalysis Efficiency)

To evaluate the evolutionary potential of synthetically designed or naturally mutating enzymes within a Complex Adaptive System (CAS) framework, it is essential to develop quantitative metrics that capture emergent functional properties. Two principal dimensions of enzymatic function---binding affinity and catalytic efficiency---serve as the core performance indicators for assessing evolutionary outcomes.

These metrics are not merely output parameters but emergent properties of the interaction between structural stability, dynamic flexibility, and thermodynamic constraints, all of which are shaped by the topology of folding pathways and mutation networks previously discussed.

1. Binding Energy (G_bind)

Binding energy reflects the thermodynamic favorability of substrate recognition and complex formation. It emerges from a constellation of molecular interactions---electrostatic forces, van der Waals contacts, hydrogen bonding, and solvent effects---that are highly sensitive to both local residue configurations and long-range structural conformation.

Computational Estimation:

Mohon tunggu...

Lihat Konten Nature Selengkapnya
Lihat Nature Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun