Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Nature

a CAS Framework for Predicting the Synthetic Evolution of Anti-Plastic Enzymes

3 Juni 2025   17:54 Diperbarui: 4 Juni 2025   09:05 930
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
(Tabel CAS Variables in Nonlinear Dynamic (Sumber: Pribadi))

By grounding our evaluation of synthetic enzyme evolution in these systemic and emergent metrics, we move beyond brute-force enumeration toward principled, interpretable, and predictive frameworks, suitable for integration with machine learning models and high-throughput experimental pipelines.

Section 4. Synthetic Evolution Simulation Architecture

A. Designing an in silico Evolution Engine Using CAS Principles

To faithfully simulate the evolution of synthetic enzymes capable of biodegrading complex polymers (e.g., plastics), we propose an in silico evolution engine that is explicitly grounded in the principles of Complex Adaptive Systems (CAS). This engine is not a linear pipeline but a dynamic, self-modulating system that mirrors the co-adaptive, probabilistic, and emergent behaviors observed in biological evolution.

This section outlines the core architectural philosophy, components, and operational flow of such a simulation system.

1. Philosophical Premise: Beyond Deterministic Simulation

Traditional protein evolution models rely on sequence-based fitness predictions, which often neglect the multilevel interdependencies present in folding dynamics, energy landscapes, and adaptive pressures. CAS principles help bridge this gap by introducing a multi-agent, probabilistic, and feedback-rich environment in which artificial protein lineages evolve through simulated pressures.

Key theoretical underpinnings include:

Emergence: New functions may arise from combinations of residues or mutations not individually beneficial.

Nonlinearity: Mutation impacts are not additive; small changes can cause folding bifurcations or systemic failures.

Distributed adaptation: Mutational information is not stored centrally but emerges from iterative feedback between structural modules.

Mohon tunggu...

Lihat Konten Nature Selengkapnya
Lihat Nature Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun