Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Nature

a CAS Framework for Predicting the Synthetic Evolution of Anti-Plastic Enzymes

3 Juni 2025   17:54 Diperbarui: 4 Juni 2025   09:05 932
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
((CAS Variables in Graph-theoretic Interpretation (Sumber: Pribadi))

Mutation Cost penalizes disruptive or overly aggressive alterations.

Rewards are sparse and often delayed, emphasizing the importance of temporal credit assignment, a hallmark strength of RL methods.

3. Learning Algorithm and Architecture

We suggest employing Deep Reinforcement Learning methods for high-dimensional control, such as:

Deep Q-Networks (DQN) for discrete mutation actions

Proximal Policy Optimization (PPO) for policy-gradient-based control

Multi-Agent RL where agents specialize (e.g., one focuses on active sites, another on hydrophobic core)

The RL agent may be further enhanced by:

Attention mechanisms to focus on structurally or functionally critical residues

Curriculum learning: agents start with simple tasks (e.g., preserve folding), then advance to complex ones (e.g., evolve novel substrate binding)

4. Feedback Loop with CAS Dynamics

Mohon tunggu...

Lihat Konten Nature Selengkapnya
Lihat Nature Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun