Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Nature

a CAS Framework for Predicting the Synthetic Evolution of Anti-Plastic Enzymes

3 Juni 2025   17:54 Diperbarui: 4 Juni 2025   09:05 932
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
((CAS Variables in Graph-theoretic Interpretation (Sumber: Pribadi))

Unlike black-box models, the CAS-based engine emphasizes transparency and traceability:

Each fitness decision is linked to interpretable sub-metrics (e.g., hydrogen bond disruptions, catalytic distance changes).

Evolutionary paths are tracked as mutation trees or interaction graphs, enabling hypothesis testing on: Sequence-function relationships. Structural bottlenecks. Mutational robustness vs. fragility. 

The output is not merely a set of optimized sequences but a navigable landscape of evolutionary logic, capable of informing real-world bioengineering decisions.

4.B. Incorporation of Reinforcement Learning Agents as Mutation Drivers

As synthetic enzyme evolution increasingly demands adaptive, intelligent control over mutational exploration, we propose the integration of Reinforcement Learning (RL) agents as dynamic mutation drivers within the CAS-based simulation framework. This approach marries complex systems theory with agent-based AI, enabling mutations to emerge not merely from stochastic sampling but from learned policies shaped by evolutionary outcomes.

1. Rationale for Using RL in Molecular Evolution

Traditional evolutionary algorithms (EAs) apply mutations using static or probabilistically weighted strategies. While effective in low-dimensional optimization, such methods are often:

Blind to context (e.g., residue environment, folding strain, active site location)

Inefficient in rugged fitness landscapes, prone to local minima

Non-adaptive to emergent constraints over long generations

Mohon tunggu...

Lihat Konten Nature Selengkapnya
Lihat Nature Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun