Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Nature

a CAS Framework for Predicting the Synthetic Evolution of Anti-Plastic Enzymes

3 Juni 2025   17:54 Diperbarui: 4 Juni 2025   09:05 932
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
((CAS Variables in Graph-theoretic Interpretation (Sumber: Pribadi))

In contrast, reinforcement learning enables mutation selection as an active, state-aware decision process. An RL agent learns which mutations---or classes of mutations---are more likely to lead to viable and performant enzymes, based on feedback from the system's emergent dynamics.

2. Agent-Environment Design

The simulation engine defines a custom evolutionary environment in which RL agents interact with protein sequences as evolving states.

a. State Space

The agent's perception of the state includes:

Current amino acid sequence or encoded features (e.g., hydrophobicity, charge profile)

Folding metrics (e.g., predicted RMSD, contact map entropy)

Historical mutation trajectory

Functional scores (binding energy, catalysis efficiency)

Environmental parameters (e.g., simulated pH, temperature)

b. Action Space

Mohon tunggu...

Lihat Konten Nature Selengkapnya
Lihat Nature Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun