Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Nature

Rotating Hyperspherical Universe in Einstein-Cartan Cosmology 2.0

15 April 2025   21:55 Diperbarui: 15 April 2025   21:55 86
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Nature. Sumber ilustrasi: Unsplash

Initial Conditions from Quantum Gravity: Generate spin and shear seeds from quantum models (e.g. spin foams or bounce cosmology).

  • Evolution of Perturbations: Solve the perturbed Einstein--Cartan equations for scalar, vector, and tensor modes. Study mode coupling due to torsion and anisotropy.

  • Synthetic CMB Maps: Produce mock CMB skies including rotational and torsional effects. Compare statistical properties (e.g. alignment statistics, power asymmetry) with Planck and upcoming missions.

  • Boltzmann Code Extension: Modify Boltzmann solvers (e.g. CAMB, CLASS) to incorporate torsion terms and anisotropic metrics.

  • Such numerical work will be crucial for quantitative model selection and for placing stringent constraints on the spin--torsion coupling parameter \alpha and initial vorticity values.

    Final Remark

    The synthesis of torsion geometry, spin matter coupling, and cosmic rotation offers not just a resolution to current observational tensions, but a profound reinterpretation of the very fabric of spacetime. The Einstein--Cartan--Bianchi IX cosmology opens a path forward where structure, entropy, and geometry are not imposed externally, but arise naturally from the dynamical interplay of spin, curvature, and time itself.

    Appendices

    Appendix A: Derivation of Bianchi IX Metric Tensor Components

    The Bianchi IX model represents the most general homogeneous but anisotropic cosmological model with a closed spatial topology (S3\mathbb{S}^3). It is characterized by the structure constants of the SU(2) Lie algebra, making it ideal for modeling hyperspherical geometries with anisotropic scaling.

    The metric in synchronous coordinates is:

    Mohon tunggu...

    Lihat Konten Nature Selengkapnya
    Lihat Nature Selengkapnya
    Beri Komentar
    Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

    Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
    LAPORKAN KONTEN
    Alasan
    Laporkan Konten
    Laporkan Akun