Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Evolution as Complex Adaptive System: a Mathematical Framework

18 September 2025   20:30 Diperbarui: 18 September 2025   20:30 50
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Predatory benefit is modeled as the probability of capturing prey per encounter:

B(T,eco)=Egainphunt(T,tprey),B(\mathbf{T}, \Theta_{eco}) = E_{gain} \cdot p_{hunt}(\mathbf{T}, \mathbf{t}_{prey}),B(T,eco)=Egainphunt(T,tprey),

with:

phunt(T,tprey)=(1T1+2T3+3T41tprey,12tprey,2),p_{hunt}(\mathbf{T}, \mathbf{t}_{prey}) \;=\; \sigma\!\Big(\alpha_1 T_1 + \alpha_2 T_3 + \alpha_3 T_4 \;-\; \beta_1 t_{prey,1} - \beta_2 t_{prey,2}\Big),phunt(T,tprey)=(1T1+2T3+3T41tprey,12tprey,2),

where (x)=1/(1+ex)\sigma(x) = 1/(1 + e^{-x})(x)=1/(1+ex) is a sigmoid function bounding the probability between 0 and 1.

T1,T3,T4T_1, T_3, T_4T1,T3,T4 are predator traits contributing to prey detection, maneuvering precision, and aerodynamic performance.
tprey,1,tprey,2t_{prey,1}, t_{prey,2}tprey,1,tprey,2 represent prey speed and evasive agility.
i\alpha_ii and i\beta_ii are weighting coefficients that quantify trait importance.
EgainE_{gain}Egain is the energetic return per successful hunt.
This formulation ensures that predatory success emerges from relative advantage: a predator's traits must exceed prey defenses to yield substantial benefit.

2. Cost Function: Trade-Offs

Adaptive traits are not free. Increased wing loading, for example, may reduce maneuverability; enhanced neuromuscular control may incur high metabolic demand. We represent such trade-offs with a quadratic cost function:

C(T)=1T22+2T32+3(T4)2,C(\mathbf{T}) \;=\; \lambda_1 T_2^2 + \lambda_2 T_3^2 + \lambda_3 (T_4 - \theta)^2,C(T)=1T22+2T32+3(T4)2,

where:

i\lambda_ii are cost coefficients reflecting energetic or structural burden.
T2T_2T2 (respiratory capacity) incurs metabolic cost at high values.
T3T_3T3 (neuromuscular precision) scales quadratically with neural investment.
T4T_4T4 (wing morphology) has an optimal aerodynamic design \theta; deviations reduce efficiency.
This structure embeds biological realism: extreme values may reduce fitness as much as deficiencies, capturing the principle that adaptation requires balance across modules.

HALAMAN :
Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun