Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Evolution as Complex Adaptive System: a Mathematical Framework

18 September 2025   20:30 Diperbarui: 18 September 2025   20:30 50
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

2. Agent-Based Representation

While replicator--mutator equations provide analytical tractability, they assume infinite population sizes and well-mixed interactions. To relax these assumptions and incorporate ecological heterogeneity, we employ agent-based modeling (ABM).

In ABM, each predator and prey is represented as an explicit agent characterized by:

A genotype vector g\mathbf{g}g.
A phenotype vector T\mathbf{T}T derived via the mapping in Section III.A.
A fitness value determined by predatory encounters (Section III.B).
The ABM proceeds in discrete time steps:

1. Trait Expression: each agent computes T\mathbf{T}T from its genotype.
2. Interaction Phase: predators attempt hunts against prey, with success probability phuntp_{hunt}phunt. Prey that evade survive to reproduce.
3. Reproduction Phase: surviving agents reproduce in proportion to their fitness, subject to mutation and recombination.
4. Update Phase: new agents replace the old population, and ecological parameters (e.g., prey abundance) are updated.
This explicit representation allows incorporation of spatial structure, stochasticity, and demographic fluctuations, which are difficult to model with purely deterministic equations. Moreover, ABM provides a natural setting for testing how system-level patterns --- such as emergent stooping behavior --- arise from micro-level rules.

3. Complementarity of Approaches

The replicator--mutator equation and ABM are not competing tools but complementary lenses. The former allows for mathematical analysis of equilibria, stability, and bifurcations. The latter enables simulation of emergent properties under realistic constraints. Together, they embody the CAS principle that evolution is both analyzable in aggregate and irreducible to averages, requiring hybrid approaches for full understanding.

D. Coupling with Predator--Prey Lotka--Volterra Extensions

Evolution does not occur in isolation but within the shifting ecological matrix of predator--prey interactions. To capture this, the genotype--phenotype--fitness mapping and replicator--mutator dynamics must be embedded in a broader ecological model. The natural starting point is the Lotka--Volterra framework, extended to incorporate trait dependency and evolutionary feedback.

1. Trait-Dependent Predation

Let NP(t)N_P(t)NP(t) and Nprey(t)N_{prey}(t)Nprey(t) denote predator and prey population sizes, respectively. Predation occurs at a rate determined not only by encounter frequency but also by the relative trait values of predator and prey. We define a trait-dependent predation function:

HALAMAN :
Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun