-Â Alternative: Gaussian smoothing with kernel \( \sigma = 5 \) Mpc/h. Â
Step 2: Void Identification
Watershed Algorithm (ZOBOV/VIDE-like): Â
```python Â
from skimage.segmentation import watershed Â
def find_voids(density_field, threshold=0.2): Â
  # Threshold: / < 0.2 defines voids Â
  mask = (density_field < threshold * np.mean(density_field)) Â
  labels = watershed(density_field, markers=None, mask=mask) Â
  return labels  # Each label = 1 void Â
``` Â
Beri Komentar
Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!