Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Mathematical Framework for RNA - Protein Coevolution

21 September 2025   09:49 Diperbarui: 21 September 2025   09:49 21
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

4. Disconnect across scales.

Statistical treatments typically analyze proteomic data in isolation, without embedding them in population dynamics, ecological contexts, or evolutionary landscapes. This limits their ability to bridge molecular signatures with broader evolutionary processes. The consequence is a persistent explanatory gap: we know that genetic codes and proteins are correlated, but we lack a formal, reproducible framework for understanding why such correlations arise and how they stabilize. Addressing this gap requires a paradigm shift---from descriptive statistics to Complex Adaptive Systems modeling, where interdependence, feedback, and emergent attractors can be formalized mathematically.

III. Theoretical Foundations

A. Principles of Complex Adaptive Systems

Complex Adaptive Systems (CAS) are systems composed of multiple interacting components, or agents, whose local interactions generate global patterns that cannot be reduced to the properties of individual parts. CAS theory has been applied across domains ranging from ecology to economics, and it provides a unifying framework for understanding how feedback, nonlinearity, and adaptation produce emergent order.

Key principles of CAS directly relevant to RNA--protein coevolution include:

1. Decentralized interactions.

No central controller dictates outcomes; rather, system-level organization emerges from the collective dynamics of many local interactions. In molecular evolution, RNA motifs and protein domains interact locally (through binding affinities, codon assignments, or folding constraints), yet produce global structures such as the ribosome.

2. Feedback loops.

CAS are characterized by both positive and negative feedback. For RNA--protein systems, RNA influences the production and structure of proteins, while proteins stabilize, modify, or translate RNA. These reciprocal feedbacks are the basis for synchronized adaptation.

3. Nonlinear genotype--phenotype mapping.

HALAMAN :
Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun