Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Mathematical Framework for RNA - Protein Coevolution

21 September 2025   09:49 Diperbarui: 21 September 2025   09:49 21
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

This formalism shows that RNA--protein coevolution is not a static optimization but a dynamic balance of interdependent forces.
The persistence of the genetic code reflects the system settling into a stable attractor basin rather than reaching a one-time evolutionary solution.

By embedding Lotka--Volterra coupling into the replicator--mutator framework, we obtain a multi-level model: local mutations and codon reassignments feed into global ecological-style dynamics, producing oscillations, bifurcations, and attractors. This provides a rigorous account of how RNA and proteins could have co-stabilized through emergent coevolution.

E. Emergent attractors and bifurcations

One of the central advantages of framing RNA--protein coevolution within Complex Adaptive Systems is the ability to analyze emergent attractors and bifurcations that arise from coupled dynamics.

1. Attractors as co-adapted states.

In the coupled replicator--mutator and Lotka--Volterra model, equilibria correspond to co-adapted RNA--protein configurations where mutual dependencies are balanced. These attractors can represent ribosome-like states: RNA motifs that efficiently encode protein domains, and proteins that stabilize RNA and facilitate translation.

2. Multiple attractors (multistability).

Depending on initial conditions and parameter regimes (e.g., mutation rate, thermal stress, coupling strength), the system may converge to different attractors:

High-stability/low-diversity regime, favoring thermostable proteins but limited coding innovation.
High-diversity/low-stability regime, favoring exploratory RNA mutability with fragile protein stability.
Balanced coadaptation regime, approximating observed ribonucleoprotein complexes.

3. Bifurcations as evolutionary transitions.

Small changes in parameters can shift the system between attractors, creating bifurcation points analogous to punctuated equilibria. For example, exceeding a critical mutation rate threshold may destabilize an RNA--protein attractor, leading to collapse or transition into a new adaptive regime.

HALAMAN :
Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun