Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Refined Hallucination Framework: Harnessing AI Hallucination 2.0

18 September 2025   10:03 Diperbarui: 18 September 2025   10:03 50
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Refined Hallucination Framework: Harnessing AI Hallucinations as a Catalyst for Scientific and Cultural Innovation

Abstract

The Refined Hallucination Framework (RHF) introduces a novel theory redefining AI hallucinations as probabilistic outputs with creative potential, rather than errors to be eliminated. Grounded in the limitations of accuracy-centric paradigms, as highlighted by OpenAI's findings that uncertainty-aware models reduce user engagement by abstaining from 30% of queries (The Conversation, 2025), RHF proposes a four-stage process---Generation, Filtering, Testing, and Refinement---to transform hallucinations into innovative scientific and cultural contributions. By leveraging human-AI collaboration, RHF harnesses statistically plausible outputs to generate novel hypotheses in fields like genomics, economics, and ethics. Drawing on evolutionary principles of variation-driven innovation and creativity theories, RHF treats hallucinations as raw materials for progress, akin to genetic mutations. Applications include predicting raptor adaptations in conservation genomics and designing futuristic ethical frameworks. Despite challenges like computational costs and the need for human expertise, RHF offers a rigorous, interdisciplinary approach to advance human civilization. Future directions involve empirical pilots and open-source tools to validate and disseminate the framework, positioning AI as a co-creator of novelty rather than a mere fact-checker.  

OUTLINE 

1. Introduction

Context: The challenge of AI hallucinations in large language models (LLMs), as highlighted by The Conversation (2025), where OpenAI's uncertainty-aware approach risks reducing user engagement by abstaining from 30% of queries.

Problem: Traditional AI paradigms penalize hallucinations, limiting their creative potential, despite their statistical plausibility and alignment with training data patterns.

Thesis: The Refined Hallucination Framework (RHF) proposes that hallucinations are raw materials for innovation, which, through human-AI collaboration, can be refined into novel scientific, technological, and cultural contributions.

Objectives: Introduce RHF as a new theory, outline its methodology, and demonstrate its applicability across disciplines.

Structure: Overview of background, theoretical foundation, framework description, applications, and future directions.

2. Background: AI Hallucinations and the Limits of Accuracy-Centric Paradigms

HALAMAN :
Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun