Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Refined Hallucination Framework: Harnessing AI Hallucination 2.0

18 September 2025   10:03 Diperbarui: 18 September 2025   10:03 50
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

Output: Polished, actionable contributions---such as theories, policies, or designs---that harness the creative potential of AI hallucinations while meeting rigorous scientific or cultural standards, ready for adoption or further development.

F. Validation: Hypothetical Case Studies to Demonstrate RHF's Efficacy

To validate the Refined Hallucination Framework (RHF), this section presents hypothetical case studies in genomics and economics, demonstrating how the framework's four-stage methodology---Generation, Filtering, Testing, and Refinement---transforms AI hallucinations into actionable innovations. These examples illustrate RHF's efficacy in harnessing probabilistic outputs for novel contributions, addressing the limitations of accuracy-centric paradigms by balancing creativity with rigor. By applying RHF to interdisciplinary queries, the framework showcases its potential to generate breakthroughs in scientific and practical domains.

Case Study 1: Genomics -- Predicting Raptor Adaptations to Climate Change

Generation: An LLM is prompted with "Predict novel genomic adaptations in raptors for 2050 climate scenarios." The AI generates diverse outputs, including hallucinations such as a speculative gene network for enhanced thermoregulation in Peregrine Falcons (Falco peregrinus), blending patterns from existing genomic data with novel combinations (e.g., linking angiopoietin to climate-resilient circulatory systems).

Filtering: Genomics experts evaluate the outputs for novelty (e.g., unique pleiotropic links), plausibility (e.g., alignment with known raptor genomes), and domain relevance (e.g., applicability to conservation), selecting a hallucinatory model proposing adaptive mutations in opsin and BDNF for enhanced prey tracking in altered habitats.

Testing: The model is validated through in silico simulations, such as phylogenetic modeling to test mutation viability under climate scenarios, comparing outcomes against baseline data from falcon genomes.

Refinement: The validated hypothesis is refined into a publishable theory on raptor conservation genomics, incorporating empirical data to propose monitoring strategies for adaptive loci like angiopoietin in endangered populations.

Case Study 2: Economics -- Developing Novel Market Models for AI-Driven Economies

Generation: Prompted with "Innovate economic models for 2050 AI-integrated markets," the AI produces variants, including hallucinations like a decentralized barter system mediated by predictive AI algorithms, drawing on statistical patterns from economic datasets.

Filtering: Economists rank outputs based on novelty (e.g., AI-mediated resource allocation), plausibility (e.g., consistency with blockchain trends), and alignment with goals (e.g., addressing scarcity), selecting a hallucinatory model for a "predictive barter economy."

HALAMAN :
Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun