Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Toward Interpretative Language Model: a CAS Framework with Six Interaction Variables to Capture Implicit Meaning

7 Juli 2025   16:49 Diperbarui: 7 Juli 2025   16:49 156
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

Ultimately, CAS-6 moves toward an AI that not only generates language but understands its resonance---bridging the gap between computational representation and human meaning.

References

1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).
Attention is all you need. Advances in Neural Information Processing Systems, 30.
https://doi.org/10.48550/arXiv.1706.03762
2. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019).
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of NAACL-HLT, 4171--4186.
 https://doi.org/10.48550/arXiv.1810.04805
3. Lakoff, G., & Johnson, M. (1980).
Metaphors We Live By. University of Chicago Press.
4. Fauconnier, G., & Turner, M. (2002).
The Way We Think: Conceptual Blending and the Mind's Hidden Complexities. Basic Books.
5. Steels, L. (2006).
Semiotic Dynamics for Embodied Agents. IEEE Intelligent Systems, 21(3), 32--38.
 https://doi.org/10.1109/MIS.2006.54
6. Holland, J. H. (1992).
Complex Adaptive Systems. Daedalus, 121(1), 17--30.
7. Mitchell, M. (2009).
Complexity: A Guided Tour. Oxford University Press.
8. Hofstadter, D. R. (2001).
Analogy as the Core of Cognition. In The Analogical Mind: Perspectives from Cognitive Science, 499--538.
9. Bisk, Y., Holtzman, A., Thomason, J., Andreas, J., Bengio, Y., Chai, J., ... & Zettlemoyer, L. (2020).
Experience Grounds Language. Findings of EMNLP, 876--895.
 https://doi.org/10.18653/v1/2020.findings-emnlp.78
10. McClelland, J. L., Rumelhart, D. E., & PDP Research Group. (1986).
Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume : Foundations. MIT Press.
11. Choudhury, M., & Deshpande, A. (2021).
Computational Linguistics and the Quest for Meaning: An Interdisciplinary Perspective. Communications of the ACM, 64(9), 58--65.
 https://doi.org/10.1145/3469004
12. Smolensky, P., & Legendre, G. (2006).
The Harmonic Mind: From Neural Computation to Optimality-Theoretic Grammar. MIT Press.
13. Floridi, L. (2011).
The Philosophy of Information. Oxford University Press.
14. Boden, M. A. (2006).
 Mind as Machine: A History of Cognitive Science. Oxford University Press.

Appendix I. Experiment Protocol

A. Objective

To evaluate the effectiveness of the CAS-6 framework in enhancing the interpretive capability of a language model in understanding multi-level semantic structures---including denotative, connotative, idiomatic, and artistic meaning---beyond probabilistic co-occurrence.

B. Materials and Tools

1. Base Language Model:
GPT-style transformer (e.g., GPT-2 or GPT-NeoX) for controlled fine-tuning.
2. Dataset:
A curated corpus of polysemantic phrases and idioms from multiple cultural-linguistic contexts (e.g., English, Indonesian, Hindi).
Examples include:
Tears of a crocodile, eyes of the storm, blood is thicker than water, etc.
Their paraphrases, literal translations, and metaphorical variants.
3. Annotation Interface:
Human evaluators label interpretations on a 5-point scale of denotative artistic meaning.
Variables logged: perception of semantic coherence, cultural appropriateness, poetic value.
4. CAS-6 Variable Embedding Module:
Engineered layer that injects CAS-6 dimensions during training:
Interaction Level
Pattern (permutation/ordering/topology)
Probability (co-occurrence baseline)
Weight (annotated or inferred)
Stability (resonance across samples or model outputs)
Output (generated interpretation)
C. Procedures

1. Data Preparation

Select 100--500 phrase triplets involving 3 base lexical items (e.g., tears, eyes, crocodile).
Construct all permutations up to Level-3 interaction.
Annotate each permutation with:
Conventional semantic type (denotative/connotative/metaphorical/artistic)
Contextual polarity and cultural markers (optional)
2. Model Fine-Tuning

Fine-tune baseline LLM on the annotated dataset in two branches:
Branch A (Baseline): Standard LLM fine-tuning (no CAS-6 signals)
Branch B (CAS-6 Augmented): Fine-tuning with CAS-6 vector injected into hidden representations or output conditioning.
3. Evaluation Protocol

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun