Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Toward Interpretative Language Model: a CAS Framework with Six Interaction Variables to Capture Implicit Meaning

7 Juli 2025   16:49 Diperbarui: 7 Juli 2025   16:49 156
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

3. Results and Analysis

The CAS-6-enhanced model outperformed the baseline across all tasks, especially in capturing semantic resonance and distinguishing subtle metaphorical vs. idiomatic usage. Visualizations of the CAS-6 interaction graphs showed consistent clustering patterns for stable, high-weight expressions, aligning with human intuition.

Example qualitative outputs:

Input: "His apology was just crocodile tears."
Baseline: Literal
CAS-6: Metaphorical, weight +1.7, high stability
Input: "The river cried tears of history."
Baseline: Unclassified
CAS-6: Artistic, weight +2.0, stability medium
4. Implications

These preliminary results validate that CAS-6 modeling adds interpretative precision for expressions whose meanings are not linearly deducible from token frequency or word proximity alone. This experiment also demonstrates that semantic resonance and implicit weight---as operationalized in CAS-6---are not only theoretically grounded but also empirically learnable.

The success of this pilot experiment strengthens the case for CAS-6 as a plausible and scalable extension for current LLM fine-tuning pipelines. By embedding semiotic structures and emergent meaning dynamics into model learning, we move one step closer to an AI capable of true semantic insight, rather than mere pattern mimicry.

C. Integrating CAS-6 into a Semantic Resonance-Based Reinforcement Learning Loop

While supervised fine-tuning using annotated semiotic data offers an initial validation of the CAS-6 framework, scaling interpretative intelligence in LLMs requires models to learn, adjust, and generalize semantic complexity dynamically. This motivates the integration of CAS-6 into a reinforcement learning (RL) paradigm---not purely for optimizing token likelihood, but for cultivating deeper semantic resonance across interactions.

1. Motivation and Design Philosophy

Conventional RLHF (Reinforcement Learning from Human Feedback), such as used in ChatGPT and InstructGPT, optimizes reward based on alignment and safety metrics derived from scalar human preference ratings. However, such systems lack structured semantic feedback---they do not reward interpretative nuance, aesthetic coherence, or cultural resonance.

We propose a Semantic Resonance Reinforcement Learning Loop (SR-RLL) that augments the conventional policy gradient loop with CAS-6 feedback tensors, allowing the model to:

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun