Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Toward Interpretative Language Model: a CAS Framework with Six Interaction Variables to Capture Implicit Meaning

7 Juli 2025   16:49 Diperbarui: 7 Juli 2025   16:49 156
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

3. Implementation Pathways

Potential approaches to implement cultural contextualization via CAS-6 include:

4. Broader Impacts

A culturally aware LLM has implications across several domains:

Education: Adaptive tutors that explain concepts through local metaphors and cultural analogies.
Creative AI: Poetry, storytelling, and dialogue generation that respects cultural narrative forms.
Healthcare and Policy: Systems that interpret and convey sensitive topics with context-aware empathy.
Through the lens of CAS-6, meaning becomes a culturally resonant structure, not just a linguistic pattern. The model is no longer merely translating or predicting, but participating in the semiotic logic of culture.

6. Discussion

A. Strengths of the CAS-6 Approach: Toward Integrative and Human-Centric Semantics

The CAS-6 framework introduces a paradigm shift in the way AI models interpret and generate language by infusing probabilistic modeling with structural, semantic, and emergent dimensions of meaning. While traditional LLMs rely heavily on statistical co-occurrence and high-dimensional embeddings, CAS-6 seeks to model how meaning is constructed, stabilized, and transformed through dynamic multi-word interactions. This section outlines the key advantages of this approach.

1. Bridging the Divide between Statistics and Semantics

Contemporary LLMs such as GPT and BERT are trained to predict words based on likelihood distributions derived from vast corpora. However, they often lack an explicit internal model for how meaning arises from structural and contextual interaction among words beyond mere frequency.

By incorporating variables such as:

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun