Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Toward Interpretative Language Model: a CAS Framework with Six Interaction Variables to Capture Implicit Meaning

7 Juli 2025   16:49 Diperbarui: 7 Juli 2025   16:49 157
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

"He wept crocodile tears while holding the deed to her family's land."

A traditional LLM may treat "crocodile" and "tears" independently or miss the idiom's emotional sarcasm. A CAS-6-enhanced system, recognizing the high-weight + high-stability idiomatic construct, would foreground the metaphor, inferring insincerity, and correctly modulate downstream emotional or rhetorical interpretation.

By integrating semantic stability and implicit interpretive weight into the comprehension pipeline, CAS-6 surpasses frequency-centric paradigms and moves closer to human-like interpretation. Meaning is shown to be not just a matter of occurrence, but of resonance, culture, and cognitive synergy. This shift is essential for advancing LLMs from statistical language generators to semantic interpreters and co-creators of meaning

5. Proof-of-Concept: Toward CAS-6-Enhanced LLMs

A. Integration of a CAS-6-Based Semantic Layer in LLM Fine-Tuning

To bridge the current limitations in Large Language Models (LLMs) regarding deep semantic understanding, we propose the integration of a CAS-6-informed semantic layer into the existing architecture, specifically during the fine-tuning phase. This layer operates orthogonally to traditional transformer attention mechanisms and augments them by modeling interactional dynamics among lexical units, informed by the six CAS-6 dimensions:

Interaction Level (L)
Interaction Pattern (P)
Interaction Probability (Pr)
Interaction Weight (W)
Interaction Stability (S)
Interaction Output Type (O)
1. Semantic Layer Architecture

The proposed semantic layer functions as a dynamic, context-sensitive graph engine embedded post-attention or mid-layer in a transformer-based model. Each token sequence input is processed in parallel by two tracks:

Traditional Self-Attention Track: Captures syntactic and statistical dependencies.
CAS-6 Semantic Track: Constructs an Interaction Graph (IG) wherein each node represents a token, and each edge encodes a CAS-6 interaction with weighted parameters.
Semantic Graph Construction Process:

For an input sequence T=[w1,w2,...,wn]T = [w_1, w_2, ..., w_n], the CAS-6 graph G=(V,E)G = (V, E) is built such that:

V={w1,w2,...,wn}V = \{w_1, w_2, ..., w_n\}
E={(wi,wj,fCAS6(wi,wj))}E = \{(w_i, w_j, f_{CAS6}(w_i, w_j))\}
Where fCAS6f_{CAS6} computes a vector embedding of the CAS-6 attributes for the pair (wi,wj)(w_i, w_j), such as:

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun