Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Toward Interpretative Language Model: a CAS Framework with Six Interaction Variables to Capture Implicit Meaning

7 Juli 2025   16:49 Diperbarui: 7 Juli 2025   16:49 157
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Interaction weight acts as a semantic amplifier or suppressor. By integrating this dimension, CAS-6 allows AI systems to not only predict plausible next tokens, but also navigate the emotional, cultural, and philosophical topology of meaning---one that humans naturally traverse when producing or interpreting language.

3.6 Interaction Stability: Semantic Resonance and Memory-Like Persistence

In the CAS-6 framework, interaction stability is an essential dimension that captures the temporal persistence and semantic resonance of word interactions within a larger discourse context. Traditional LLMs tend to treat each token generation as an isolated event, without taking into account how the cumulative meaning of previous interactions can persist, shift, or reinforce over time. This limitation affects the model's ability to produce coherent long-form outputs and to capture the evolution of meaning over extended conversations or narratives.

We propose a conceptualization of interaction stability that integrates aspects of semantic resonance with memory-like persistence, akin to human cognitive processes. This allows for more dynamic, temporally sensitive interpretation in language generation and understanding.

A. Defining Interaction Stability

Interaction stability refers to the degree to which the meaning generated by word interactions remains consistent or evolves within a given context. It can be seen as the resonance of meaning across different contexts and the persistence of this resonance as tokens or phrases are reiterated or elaborated within a discourse. Formally, we define interaction stability (S) as:

Sij=f(resonance,persistence)S = f(\text{resonance}, \text{persistence})

Where:

Resonance measures how strongly the interaction of two words maintains its meaning across shifting contexts.
Persistence reflects how well this interaction can be retained and built upon in subsequent discourse.
This formulation echoes cognitive models of memory, in which initial meaning encoding (via interaction probability and weight) is subject to semantic decay and resonance amplification over time.

B. Memory-Like Mechanism in CAS-6

In human cognition, memory is not a static archive but a dynamic system where meanings are reconstructed based on prior experiences and current context. Similarly, in CAS-6, we propose a memory-like mechanism that adapts the stability of word interactions over time. This involves:

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun