Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Toward Interpretative Language Model: a CAS Framework with Six Interaction Variables to Capture Implicit Meaning

7 Juli 2025   16:49 Diperbarui: 7 Juli 2025   16:49 157
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

       [tears][eyes]

This directed acyclic graph (DAG) formulation allows for:

Path analysis to trace semantic flow
Subgraph matching for idiom detection
Dynamic topology updates in dialog-based LLMs
B. Systemic Notation Using Lightweight Tensors

To generalize computational implementation, we define a simple Interaction Tensor I capturing:

i, j: Indexes of word pairs
k: Dimension representing interaction attributes
Let:

I = weight (w [2, +2])
I = stability (s [0, 1])
I = probability (p [0, 1])
Thus, for a phrase of 3 words, the interaction tensor would have shape [3, 3, 3], where the diagonal can be reserved for self-reflection metrics (i.e., lexical salience).

Example Tensor (Simplified):

For tokens: [0]: tears, [1]: eyes, [2]: crocodile

This tensor can serve as input to a differentiable module within LLM pipelines that modulates prediction paths or attention weights based on semantic resonance, not just token frequency.

Advantages of This Mathematical Formalism

Interpretability: Graph edges and tensor elements are human-readable, supporting explainable AI.
Computational Tractability: Sparse tensors and shallow graphs enable efficient integration with current LLMs.
Extensibility: This structure scales to higher interaction levels (n > 3) and can be fused with self-attention mechanisms in transformer architectures.
By embedding interaction structure into formal representations, CAS-6 enables models to navigate meaning space as a dynamic, context-sensitive topology---bringing them closer to the cognitive adaptability of human semantics.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun