Ke depan, potensi AI dalam verifikasi koleksi xylarium mengarah pada masa depan dengan efisiensi dan akurasi yang lebih tinggi, yang dapat mendorong peningkatan signifikan dalam upaya konservasi. Inisiatif kolaboratif dan riset yang berkelanjutan diharapkan dapat terus menyempurnakan aplikasi AI, memperkuat kerja sama internasional, dan mendorong inovasi dalam pengelolaan spesimen botani. Seiring dengan semakin banyaknya lembaga yang mengadopsi teknologi AI, lanskap verifikasi xylarium diprediksi akan mengalami transformasi besar, mendukung tujuan ganda: kemajuan ilmiah dan pelestarian keanekaragaman hayati [6][7].
Referensi
[1] R. De Blaere et al., “SmartWoodID—an image collection of large end-grain surfaces to support wood identification systems,” Database, vol. 2023, p. baad034, 2023.
[2] X. He et al., “Machine learning-based wood anatomy identification: towards anatomical feature recognition,” IAWA J., vol. 1, no. aop, pp. 1–19, 2024.
[3] S.-W. Hwang and J. Sugiyama, “Computer vision-based wood identification and its expansion and contribution potentials in wood science: A review,” Plant Methods, vol. 17, no. 1, p. 47, 2021.
[4] D. J. Verly Lopes, G. W. Burgreen, and E. D. Entsminger, “North American hardwoods identification using machine-learning,” Forests, vol. 11, no. 3, p. 298, 2020.
[5] P. Ravindran, A. C. Wade, F. C. Owens, R. Shmulsky, and A. C. Wiedenhoeft, “Towards sustainable North American wood product value chains, part 2: computer vision identification of ring-porous hardwoods,” Can. J. For. Res., vol. 52, no. 7, pp. 1014–1027, 2022.
[6] R. Arévalo et al., “Imaged based identification of colombian timbers using the xylotron: A proof of concept international partnership,” Colomb. For., vol. 24, no. 1, pp. 5–16, 2021.
[7] R. G. H. Rahmanto et al., “Anatomical comparison of branches and trunks of seven commercial wood species,” in IOP Conference Series: Earth and Environmental Science, 2021, vol. 914, no. 1, p. 12071.
[8] P. Ravindran et al., “Field-deployable computer vision wood identification of Peruvian timbers,” Front. Plant Sci., vol. 12, p. 647515, 2021.
[9] M. R. Arifin, B. Sugiarto, R. Wardoyo, Y. Rianto, and others, “Development of mobile-based application for practical wood identification,” in IOP Conference Series: Earth and Environmental Science, 2020, vol. 572, no. 1, p. 12040.
[10] S. Liu et al., “How to discriminate wood of CITES-listed tree species from their look-alikes: using an attention mechanism with the ResNet model on an enhanced macroscopic image dataset,” Front. Plant Sci., vol. 15, p. 1368885, 2024.