Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Solution for Hodge Conjecture: Heuristic CAS 6 Approach 2.0

22 September 2025   16:02 Diperbarui: 22 September 2025   16:02 17
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

Prove Propositions: Formalize results like Proposition 4.1 (full closure for \(E \times E\)) using Lean's cohomology modules, extending to partial closure for \(K3 \times K3\).

Verify Metrics: Encode closure probability \(P(X)_p\) as a Lean function, proving properties like submultiplicativity for products.

The 2025 CMI workshop on Hodge Theory and Algebraic Cycles highlights Lean's potential for formalizing conjectures, and CAS-6 could contribute by providing a heuristic layer to such efforts.

C. Computational Experiments

To scale CAS-6's applicability, we propose computational experiments to test its predictions:

SageMath Pipeline: Extend the SymPy pipeline to SageMath, which supports advanced algebraic geometry computations (e.g., intersection theory on K3 surfaces). For a Calabi-Yau threefold, compute Hodge numbers, simulate cycle classes, and estimate \(P(X)_p\).

FM Kernel Simulations: Implement FM transforms in Macaulay2 to generate candidate cycles for \(K3^n\), testing whether they increase \(\dim W(X)_p\). This could involve numerical rank computations over \(\mathbb{Q}\).

Large-Scale Varieties: Test CAS-6 on varieties like hyper-Khler manifolds or Fano varieties, using distributed computing to handle high-dimensional cohomology.

These experiments align with trends in experimental mathematics, where computational tools guide theoretical insights, as seen in recent computational Hodge theory advances.

D. Philosophical Reflections on Post-Rigorous Math

CAS-6 embodies the "post-rigorous" paradigm, where intuitive heuristics are formalized without requiring complete proofs, as articulated by Tao. Philosophically, it raises questions about the role of heuristics in tackling conjectures like HC:

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun