Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Solution for Hodge Conjecture: Heuristic CAS 6 Approach 2.0

22 September 2025   16:02 Diperbarui: 22 September 2025   16:02 17
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

   \]

This indicates full closure, consistent with HC.

Interaction Stability \(S(X)\): Stability is assessed via deformation invariance. For \(E \times E\), an abelian surface, the Picard group is deformation-invariant (since \(\Pic(E \times E)\) is discrete modulo torsion). Thus, \(S(X)_1 = \dim W(X)_1 = 4\).

Interaction Outputs \(O(X)\): Outputs are \(O(X)_1 = CH^1(X) \otimes \mathbb{Q}\), with realization index \(r(X)_1 = \dim O(X)_1 - \dim S(X)_1 = 0\), as all stable classes are realized.

Proposition 4.1 (Full Closure for \(E \times E\)): The functor \(\mathcal{F}\) induces an isomorphism on the codimension-1 layer: \(W(X)_1 \to H^{1,1}(X) \cap H^2(X, \mathbb{Q})\), with \(P(X)_1 = 1\), \(S(X)_1 = \dim W(X)_1\), and \(r(X)_1 = 0\). Proof: By the Lefschetz theorem, \(\cl_1\) is surjective, and Knneth ensures \(W(X)_1\) spans via tensor products. Stability follows from deformation theory of abelian surfaces, and outputs align since HC holds.

This isomorphism confirms CAS-6's prediction of full closure, formalized categorically.

C. Computational Verification of Bases and Metrics

To ensure rigor, we compute bases and metrics using symbolic algebra in SymPy, verifying the dimensions and closure probability.

Consider the basis for \(H^2(E \times E, \mathbb{Q})\). Let \(E\) have a basis for \(H^1(E, \mathbb{Q})\) as \(\{\omega_1, \omega_2\}\) (e.g., holomorphic and anti-holomorphic forms). Then:

\(H^1(E) \otimes H^1(E)\): Basis \(\{\omega_1 \otimes \omega_1, \omega_1 \otimes \omega_2, \omega_2 \otimes \omega_1, \omega_2 \otimes \omega_2\}\), with \(\omega_1 \otimes \omega_2, \omega_2 \otimes \omega_1 \in H^{1,1}\).

\(H^2(E) \otimes H^0(E)\): Basis \(\{[E] \otimes 1\}\), in \(H^{2,0}\).

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun