Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Solution for Hodge Conjecture: Heuristic CAS 6 Approach 2.0

22 September 2025   16:02 Diperbarui: 22 September 2025   16:02 17
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

The results align with Lefschetz and Knneth, demonstrating CAS-6's ability to formalize HC's success in this case via categorical and computational tools.

V. Experiment B: Higher Elliptic Products (\(E^4\))

A. Higher-Degree Cohomology

We extend our analysis to the fourfold product of an elliptic curve, \(X = E^4 = E \times E \times E \times E\), where \(E\) is a smooth projective elliptic curve over \(\mathbb{C}\). This experiment tests the CAS-6 framework on a higher-dimensional variety where the Hodge Conjecture (HC) is known to hold in certain degrees, particularly for codimension 2 (\(p=2\)), due to the algebraic nature of cycles in abelian varieties. We focus on the degree-4 cohomology, \(H^4(X, \mathbb{Q})\), as it contains the \((2,2)\)-classes relevant to HC.

For an elliptic curve \(E\), the cohomology groups are \(H^0(E, \mathbb{Q}) \cong H^2(E, \mathbb{Q}) \cong \mathbb{Q}\) and \(H^1(E, \mathbb{Q}) \cong \mathbb{Q}^2\). The Knneth decomposition for \(X = E^4\) gives:

\[

H^4(X, \mathbb{Q}) \cong \bigoplus_{i_1 + i_2 + i_3 + i_4 = 4} H^{i_1}(E, \mathbb{Q}) \otimes H^{i_2}(E, \mathbb{Q}) \otimes H^{i_3}(E, \mathbb{Q}) \otimes H^{i_4}(E, \mathbb{Q}).

\]

The terms contributing to degree 4 are:

\((1,1,1,1)\): \(H^1 \otimes H^1 \otimes H^1 \otimes H^1\), dimension \(2 \times 2 \times 2 \times 2 = 16\),

\((2,1,1,0)\): \(H^2 \otimes H^1 \otimes H^1 \otimes H^0\), dimension \(1 \times 2 \times 2 \times 1 = 4\) (and permutations, 4 terms),

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun