\(H^0(E) \otimes H^2(E)\): Basis \(\{1 \otimes [E]\}\), in \(H^{0,2}\).
The algebraic cycles include divisors \(D_1 = E \times \{pt\}\), \(D_2 = \{pt\} \times E\), and their intersections, spanning a 4-dimensional subspace of \(H^{1,1}\).
SymPy Implementation:
import sympy as sp
# Define dimensions
h11 = sp.binomial(2, 1) * sp.binomial(2, 1) Â # H^{1,1} dimension for E E
alg_span = 4 Â # From divisor classes
P = alg_span / h11 Â # Closure probability
# Verify
print(f"H^{1,1} dimension: {h11}")
print(f"Algebraic span: {alg_span}")
Beri Komentar
Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!